

TECHNICAL REFERENCE GUIDE:

D IRECTORY SYSTEM AGENT

Published: November 2020

Version: 7.5.1

© ViewDS Identity Solutions

Technical Reference Guide: Directory System Agent

For ViewDS Release 7.5.1

Document Lifecycle

ViewDS may occasionally update documentation between software releases. Therefore, please visit www.viewds.com to

ensure you have the PDF with most recent publication date.

November 2020

This publication is copyright. Other than for the purposes of and subject to the conditions prescribed under the

Copyright Act, no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying,

recording or otherwise) be reproduced, stored in a retrieval system or transmitted without prior written permission.

Inquiries should be addressed to the publishers.

The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy

of this publication. Notwithstanding, eNitiatives.com Pty. Ltd. does not assume responsibility for any errors nor for any

consequences arising from any errors in this publication.

The software and/or databases described in this document are furnished under a licence agreement. The software and/or

databases may be used or copied only in accordance with the terms of the agreement.

ViewDS Directory, ViewDS Access Presence & ViewDS Access Sentinel are trademarks of ViewDS Identity Solutions

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

All other product and company names are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2020 ViewDS Identity Solutions

ABN 19 092 422 476

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

 i

CONTENTS

Chapter 1 About this guide ... 1

Who should read this guide ... 1

Related documents.. 1

How this guide is organized ... 1

Chapter 2 ViewDS tools... 3

ViewDS Management Agent ... 3

Stream DUA .. 4

DSA Controller .. 8

Other ViewDS tools ..10

Chapter 3 Configuring ViewDS ... 17

DSA runtime settings ..17

Communications configuration ...23

ViewDS configuration file ..38

Chapter 4 Defining schema .. 51

Concepts ..51

Schema checking ...60

Operational attributes ...62

Other operational attributes ..80

Chapter 5 Indexes, extensions and word lists .. 83

Concepts ..83

Indexes ...85

Operational attributes ...95

Word lists ..104

Chapter 6 Managing security .. 109

Authentication ...109

Access control ..121

LDAP password management ..129

Miscellaneous security topics ...141

Chapter 7 Replicating or distributing data .. 147

Distributed operations overview ...148

DSE types ..150

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

ii Contents

Access points ...152

Knowledge attributes ..152

Reference example ..154

Setting up a naming context ...155

Setting up the root entry ...158

Cross references ..160

Knowledge example ...160

Remote aliases ...161

Replication ..162

Setting up a shadowing agreement ..163

Replication attributes ..164

Converting shadow into master ..171

Replication example ...171

LDAP change log ...175

Access Proxy ..177

Appendix A Stream DUA ... 179

Stream DUA commands ...179

Stream DUA notation..209

Appendix B Supported schema ... 225

Introduction ...225

Attribute and assertion syntaxes ..226

Matching rules ..231

User attributes ..238

Operational attributes ...240

Object classes ..244

Name forms ..244

Appendix C OpenSSL and SSLeay licensing ... 247

OpenSSL License ..247

Original SSLeay License ..248

Appendix D Open XML SDK licensing ... 251

 1

Chapter 1

 About this guide

This guide provides a technical reference for the ViewDS Directory System Agent

(DSA). It includes information about configuration parameters and functionality. The

functionality can be implemented using either the Stream Directory User Agent

(Stream DUA) or ViewDS Management Agent. The Stream DUA, however, allows you

to implement functionality beyond the scope of the ViewDS Management Agent.

This chapter describes:

• Who should read this guide

• Related documents

• How this guide is organized

Who should read this guide

Read this guide if you are responsible for administration of ViewDS and need to

extend it beyond the functionality available through the ViewDS Management Agent.

Before using this guide, you should be familiar with the key concepts described in the

ViewDS Directory: Installation and Operation Guide.

Related documents

The ViewDS document set includes the following:

• ViewDS Directory: Installation and Operation Guide

• ViewDS Technical Reference Guide: Directory System Agent

• ViewDS Technical Reference Guide: User Interfaces

• ViewDS Access Sentinel: Installation and Reference Guide

• ViewDS Management Agent Help

• ViewDS Access Proxy Installation Guide

How this guide is organized

Chapter 1: About this guide

Provides an overview of this guide.

Chapter 2: ViewDS tools

Provides an overview of the ViewDS tools including the ViewDS Management Agent,

Stream DUA and DSA Controller.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

2 Chapter 1: About this guide

Chapter 3: Configuring ViewDS

Provides details of the ViewDS configuration parameters.

Chapter 4: Defining schema

Describes schema concepts and the operational attributes that define schema.

Chapter 5: Indexes, extensions and word lists

Describes indexes and word lists (synonyms, noise words) which help optimize

searches on a directory, along with attribute type extensions.

Chapter 6: Managing security

Describes how ViewDS authenticates users and controls their access to directory

entries. The chapter also describes LDAP password management along with other

miscellaneous aspects of ViewDS security.

Chapter 7: Replicating or distributing data

Provides an overview of X.500 distributed operations, and describes how to configure

DSAs for distributed operations and replication.

Appendix A: Stream DUA

Describes the Stream DUA commands and notation.

Appendix B: Supported schema

Specifies the pre-defined schema supported by ViewDS.

Appendix C: OpenSSL and SSLeay licensing

Licensing requirements for distribution of OpenSSL and SSLeay.

Appendix D: Open XML SDK licensing

Licensing requirements for distribution of the Open XML SDK.

 3

Chapter 2

 ViewDS tools

This chapter describes the tools that allow you to manage a ViewDS Directory System

Agent (DSA). It describes:

• ViewDS Management Agent

• Stream DUA

• DSA Controller

• Other ViewDS tools

ViewDS Management Agent

The ViewDS Management Agent is a Windows-based application that allows you to

manage the status of DSAs and access their configuration parameters, log files,

directory data, schema, knowledge and access controls.

The application runs on a different computer to that hosting the DSA. The Remote

Administration Service (RAS) also resides on the DSA’s host, and allows the DSA to

be started, stopped and configured remotely.

Figure 1: ViewDS Management Agent

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

4 Chapter 2: ViewDS tools

Stream DUA

The Stream Directory User Agent (Stream DUA) is the main command-line tool for

ViewDS. It allows you to configure schema, security and knowledge, and to bulk load

and extract data. The Stream DUA commands can also process files of LDIF or ELDIF

content records, and LDIF or ELDIF change records.

The Stream DUA is text-oriented and reads update and query requests from files

specified on the command line or standard input stream. The requests correspond to

the standard X.500, LDAP and XLDAP operations of the DSA interface together with

extensions for directory administration. They are written in a structured, verbose

language referred to as Stream DUA format.

Stream DUA format is used whenever data is extracted from the directory – for

example, when a subtree is dumped, or when an update operation is logged. Because

the extracted data is written in Stream DUA format, it can be reapplied to the directory

(for example, to reload the directory or replay a series of update operations).

It is also useful to understand Stream DUA format because the update logs, query

logs and dump files contain a series of Stream DUA commands.

Stream DUA commands

The Stream DUA commands permitted on an entry are insert, delete, rename, move,

and modify.

Commands permitted on any part of the directory tree are search, compare, list, read,

and dump. The dump and insert entry commands are particularly important as they

allow the database to be transported from one host to another, across software

versions or between different directory schemas.

For descriptions of the Stream DUA commands and input language, see Appendix A.

Synchronization

The Stream DUA’s set command allows you to configure a DSA to synchronize with

another directory. For more information, see set-synchronization on page 198.

Running Stream DUA

The following invokes the Stream DUA from the command line:

sdua [-AdimMUv8] [-a | -u username -p password] [-c commands]

[-K key] [-l duaLocal] [-o dsaAddress] [-O ldapAddress]

[-t vfhome] [-F ldif] { -L | -S | filename}

The options are described below.

-A Sets the dontDereferenceAliases bit of the

CommonArguments sent with each operation.

-i Displays elapsed time of the DSA’s processing of each operation.

-d Sets the manageDSAIT bit in the CommonArguments sent with

each query or update operation. This prohibits chaining of

operations and the generation of referrals. The entries which

contain the knowledge required for chaining operations can be

read and updated only when this bit is set.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 2: ViewDS tools 5

-m Suppresses reporting of successful operations. Only failed

operations are reported when this option is specified.

-M Behaves like -m except it suppresses messages about implicit

binds.

-U Prevents the Stream DUA from performing update operations.

This is useful for checking the syntax of the input file without

actually altering the database. Enquiry operations are still

performed.

-v Displays the Stream DUA version number.

-8 Causes the Stream DUA to conform to the X.500 1988

specifications as closely as possible.

-a Sets the default bind credentials to none, allowing the user to bind

anonymously by default.

-u username Sets the default username that Stream DUA uses to bind to the

DSA. The username is either the value of a userName attribute

or the full Distinguished Name (DN) of an entry in Stream DUA

notation.

-p password Sets the default password that Stream DUA uses to bind to the

DSA.

-c commands Runs commands after Stream DUA finishes processing the

sdua.startup file but before it processes commands from its

file list. If no file list is supplied, Stream DUA exits after completing
the commands. commands is a list of one or more Stream DUA

commands separated by semicolons. The last command does not

require a semicolon.

-K key When processing files that update entries, specifies the files’
encryption key. This must be supplied if the key is different from

the current system key or Stream DUA is running on a remote

machine.

-l duaLocal Uses duaLocal as the OSI calling address (only relevant for an

OSI connection) instead of the address specified by the
configuration-file parameter dualocal (see page 41).

-o dsaAddress Connects to the DSA at dsaAddress instead of the address

defined by the configuration-file parameter dsaaddress (see

page 41).

-O ldapAddress Specifies the address of an LDAP server address. It has the same
format as the ldapaddress option in the configuration file (see

Address parameters on page 41). The value of the -u option

should be an LDAP DN.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

6 Chapter 2: ViewDS tools

-t vfhome Uses vfhome as the ViewDS root directory instead of the value

set by the environment variable ${VFHOME}.

-F ldif Alters the way search results are presented. All LDAP search

results are output as LDIF content records. The output for all other

operations (including DAP search results) is either commented out

or omitted so that the entire output file is a valid LDIF file.

-L Causes Stream DUA to interpret any subsequent files named on

the command line as LDIF or ELDIF files.

-S Causes the Stream DUA to interpret any subsequent files named

on the command line as Stream DUA format files.

filename An input file of Stream DUA commands (for example, dib.*) or

LDIF records or ELDIF records. Input files are processed in the

order supplied. If no files are named on the command line, Stream

DUA reads stdin.

Startup file

At startup, Stream DUA looks for the sdua.startup file in the setup directory. If the

file exists, Stream DUA will process the file before its normal input.

The startup file is a good place to put a set command – for example, set context,

set base or set options.

Sleep file

To reduce the load imposed by Stream DUA, specify a period for it to wait between

executing each command. This is implemented by placing the sdua.sleep file in the

current working directory (without the file, the delay is 0). The first line should contain

the number of seconds that Stream DUA should ‘sleep’ between operations. The

Stream DUA checks the content of the file every minute.

Interactive mode

Stream DUA operates in interactive mode if no command is entered at the command

line. In interactive mode, Stream DUA displays the following to prompt for a command:

sdua>

It displays the following to prompt for parameters or values:

sdua>>

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 2: ViewDS tools 7

DSAIT management operations

Stream DUA supports the manageDSAIT service control. It modifies the semantics of

an operation in the DSA so that:

• The root entry and all operational attributes can be accessed.

• Knowledge is not used but is treated as attribute information. The DSA operates as

a stand-alone DSA which neither chains nor returns referrals.

The mangeDSAIT service control is required when reloading data from a database

dump, or performing knowledge configuration (see Replicating or distributing data on

page 147).

The service control can be set in one of the following ways:

• starting Stream DUA with the -d option (which also enables the DAP Admin

Protocol).

• setting the manageDSAIT bit with the set options command or the options

keyword.

Note that the -d option only sets the default value of manageDSAIT. If the set

options command or the options keyword is used for other purposes, it will

override this default and manageDSAIT must be set explicitly.

When the manageDSAIT bit is set, complete access is granted to all operational

attributes (subject to access control) and the DSA is treated as a stand-alone DSA.

The DSA does not chain or return referrals, but can return knowledge and manipulate

schema as operational attributes. Used in this way, Stream DUA can set timestamps,

change the dseType of an entry, modify schema, add or remove knowledge, and

access the root entry, etc.

DAP Admin Protocol

Stream DUA normally binds to the directory using the standard X.500 Directory

Access Protocol (DAP). In this mode, Stream DUA functions as a conformant X.500

DUA, and can be used to connect to a non-ViewDS DSA.

The DAP Admin Protocol is a superset of the standard X.500 DAP. It supports

standard DAP operations plus operations that correspond to the following:

• Stream DUA commands: add, dump, empty, fill, remove, save, checkpoint, verify,

dumpDIT, fillDIB, saveDB, synonym, verifyDIB, word, and checkpointLogs.

• DSA Controller commands: initialiseDBM, emptyDIB, openDBM, closeDBM,

exitServer, readStatus, writeStatus, bindList and server.

Stream DUA automatically binds to the DSA using the DAP Admin Protocol when one

of the additional operations is invoked. If Stream DUA is currently bound to the DSA

using DAP Protocol, it will unbind and then bind using the DAP Admin Protocol.

The default bind protocol for Stream DUA can be controlled using the set command

(see page 196).

Strong Authentication

Stream DUA can connect to the directory using DAP strong authentication to establish

its credentials. This may only be done using the bind command (see page 180).

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

8 Chapter 2: ViewDS tools

DSA Controller

The DSA Controller is a command-line tool that allows you to modify a DSA’s

operational parameters while it is running. It is only available on the ViewDS’s host,

and should be used when the ViewDS Management Agent is unavailable.

NOTE: If you use this tool to stop a DSA that was started through the ViewDS Management

Agent, then the RAS will restart the DSA immediately.

As well as allowing you to modify the DSA’s operational parameters, the DSA

Controller also allows you to:

• open, close or empty the database

• list the current DSA users

• view the DSA status

• terminate the DSA

NOTE: The DSA utility allows you to start and stop the DSA (see page 14).

Running the DSA Controller

The DSA must be running before its operational parameters can be modified through

the DSA Controller. They can also, however, be modified through the ViewDS Fast

Load tool (see page 11) if the DSA is not running.

If necessary, the DSA can be started with the -c option so that it starts with the

default values for its operational parameters. The following invokes the DSA Controller

from the command line:

dsac [-t vfhome] [-g] [-o dsaAddress] [-l localAddress] [-v]

[command ...]

If a command is included, the DSA Controller executes the command and exits.

Without a command, the DSA Controller runs in interactive mode and reads

commands subsequently entered at the command line. You can exit interactive mode

using Control-D or the quite command.

The DSA operational parameters that can be modified through the DSA Controller are

stored in the Runtime settings file (see page 17). For descriptions of the DSA , see

page 18.

Options

-t vfhome Uses vfhome as the ViewDS root directory instead of the

value set by the environment variable ${VFHOME}.

-g Runs with the super-administrator identity. This option has

been maintained for backward compatibility only – it is the

default behaviour of the DSA Controller.

-o dsaAddress Uses dsaAddress instead of the address specified by the

configuration-file parameter dsaaddress (see page 38).

-l localAddress Connects to localAddress instead of the address specified

by the configuration-file parameter dualocal (see page 38).

This is only relevant for an OSI connection.

-v Prints the ViewDS version and exits.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 2: ViewDS tools 9

Commands

The commands can be abbreviated to their first letter unless stated otherwise below.

close Closes the database. The DSA continues to run in the same
state as if launched with the -r switch. The database must be

closed to change certain parameters or to put its files into a

consistent state before a backup.

display Displays status. The DSA’s status includes its operational

state; whether the database is open or closed; a report on
each of its dot threads (new, idle or processing and, if

processing, the state and type of operation and the protocol

being used); and the values of all parameters that can be set.

empty Empties the database. Removes every entry from the

database except for an empty root entry.

NOTE: Use this command with caution.

There is no abbreviation for this command.

help Lists the available commands.

init [size] Initializes the safe file (see safe on page 21).

size specifies the default size in megabytes of the safe file. If

size is unspecified, the default in the operational parameters

file (see page 17) is used. If the file is missing, the value 4 is

used.

NOTE: The database must be closed before this command can

be used.

open Opens the database. This command is necessary after a
close command or if the DSA was started without opening the

database (using the DSA Controller -r switch).

quit Exits the tool.

reset Sets all current DSA (see page 18) to the values in the

operational parameters file (see page 17).

Use this command to restore settings after making a temporary
change. This command will not change the value of cache if

the database is open.

NOTE: The size of the safe file cannot be reset with this

command.

set params... Sets the listed DSA (see page 18).

Each param is a parameter assignment of the form

name=value. Each name must be a DSA parameter; each

value must be a non-negative number or one of the strings

off, on, false, or true.

NOTE: The values are not saved to the operational parameters

file (see page 17).

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

10 Chapter 2: ViewDS tools

setwrite

params...

Sets and writes the listed DSA (see page 18).

This command is the same as the set params...

command, except the new values are written into the

operational parameters file (see page 17). They take effect on

the DSA immediately and after it is restarted.

The abbreviation for this command is sw.

terminate Closes the database and forces the DSA to exit. The

DSA Controller also exits and cannot be restarted until the

DSA has been restarted.

userlist Displays the users connected to the DSA.

write params... Writes the listed DSA (see page 18).

This command is the same as the setwrite params...

command, except the new values only take effect when the

DSA is restarted.

DSA Controller examples

Example DSA Controller commands are shown below.

• Open the database:

dsac open

• Close the database:

dsac close

• Terminate the DSA:

dsac terminate

• List users currently connected to the DSA:

dsac userlist

Other ViewDS tools

ViewDS also has the following tools:

• ViewDS Fast Load (vfload)

• Remote Administration Service

• Billing statistics

• Database backup

• DSA utility

• Printing DUA

• SNMP proxy agent

• smerge – sort update log files

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 2: ViewDS tools 11

ViewDS Fast Load (vfload)

This utility provides the same commands as the Steam DUA. However, unlike the

Stream DUA, you must first stop the DSA before applying a ViewDS Fast Load

command.

The benefit of this utility is that it is much faster than the Stream DUA when loading

dump files or LDIF content records into a database. Its remaining commands are

useful for testing and for recovering from problems, but are rarely used in an

operational environment.

When a database is loaded by ViewDS Fast Load, there is no protection against fatal

errors because it disables all database recovery mechanisms. If a crash or fatal error

occurs, the database must be rebuilt from scratch.

When loading a large database, you may prefer to prepare a script that loads a

number of dib.* files, copies the ddm.* files to safe storage, and then continues. In

the event of a fatal error, you can resume the load from the last checkpoint rather than

restarting from the beginning.

The schema-checking level for ViewDS Fast Load is set by the schemachecking

parameter in the configuration file (see 48). For information about schema checking,

see page 60.

By default, the utility runs with the super-administrator identity and with DSA

information tree management enabled (see DSAIT management operations on

page 7). A script can override this behaviour by including commands such as bind

and set, or by using the options keyword.

Synopsis

vfload [-AimMrUv] [-a | -u username –p password] [-c commands]

 [-K key] [-t vfhome] [-F ldif] { -L | -S | filename}

Options

All options are the same as those described for the Stream DUA (see page 4), except

for the following:

-r Causes vfload to start with the DSA’s database closed.

Remote Administration Service

The Remote Administration Service (RAS) – the rasrv process – allows the ViewDS

Management Agent to start, stop and configure a DSA remotely. These services can

also be invoked from the RAS command-line tool.

Synopsis

Windows platforms only:

ras [-t vfhome] [-n windows-service-name] [-s | -i | -u]

All platforms (including Windows):

ras [-t vfhome] [-l seconds] [add servicename [servicepath

] | list | remove servicename | status | stop | servicename

{ status | dsa configure | dsa start [closed] | dsa stop

| dsa unconfigure | license install licensefile | show

configuration }]

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

12 Chapter 2: ViewDS tools

Options

Windows platforms only.

-n windows-

service-name

Uses the identified service name instead of the default service

name when interacting with the Windows service manager.

-s Starts the RAS without using the Windows service manager.

-i Installs the RAS as a Windows service.

-u Uninstalls the RAS as a Windows service.

All platforms:

-t vfhome Uses vfhome as the ViewDS root directory instead of the

value set by the environment variable ${VFHOME}.

-l seconds Allows you to override the rastimeout parameter set in the

ViewDS configuration file (page 38). This parameter sets how

long the command line will wait for a response from the
rasrv process before timing out. The default is 10 seconds,

and 0 declares an indefinite time limit.

Commands

add servicename

[servicepath]

Adds a new service (with the name servicename) for the

RAS (rasrv process) to manage. When servicepath is

omitted, the default service path of the rasrv process is

used.

list Lists the services managed by the RAS (rasrv process).

remove

servicename

Removes a service from those managed by the RAS (rasrv

process).

status Lists the status of the services (and their DSA subsystems)
managed by the RAS (rasrv process).

stop Stops the RAS (rasrv process). If the process does not

respond, the associated processes and files are cleaned up to

ensure the process can start cleanly when it is started next.

servicename

status

Reports the status of a specified service and its subsystem

DSA.

servicename dsa

configure

Adds a DSA subsystem to a service and configures the RAS

to start the DSA with its database open.

servicename dsa

start [closed]

Starts the DSA subsystem managed by servicename

(optionally, with its database closed).

servicename dsa

stop

Stops the DSA subsystem managed by servicename.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 2: ViewDS tools 13

servicename dsa

unconfigure

Removes the DSA subsystem from the service.

servicename

license install

licensefile

Installs license-key information from the specified file.

servicename show

configuration

Displays the values of all configuration file parameters. It

shows the values set in the configuration file (displayed in

double quotes); and the default values for the remaining

parameters (enclosed in brackets).

Billing statistics

The billing statistics utility produces a file of billing statistics for a specified period by

parsing the system-activity log files. (These files are generated if the alog operational

parameter is enabled – see page 18.)

The billing period is from 00:00:00 on a specified start date until 23:59:59 unspecified

end date.

Synopsis

bstats [-t vfhome] -s startdate -e enddate [-d levels]

Options

-t vfhome Uses vfhome as the ViewDS root directory instead of the value set

by the environment variable ${VFHOME}.

-s startdate Sets the start date for billing period in the format dd/mm/yy.

-e enddate Sets the end date for billing period in the format dd/mm/yy.

-d levels Sets the number of levels in the user's name, which is used when

aggregating the statistics for billing. If this option is not supplied

then the bill assumes zero levels of names. Users with names

shorter than specified will be billed separately.

Database backup

The database backup script (Solaris or Linux only) prepares the directory for an

incremental or full backup, and copies backup files to a tape device.

The script closes the database, consolidates and merges the log files, creates a new

set of empty log files, and reopens the database. During a full backup, it dumps the

database (which continues to run) and moves the dumped dib.* files to the

dump/fulldump directory.

The script should be run daily when there is no user activity. It usually runs from an

entry in the administrator’s cron table, and creates an incremental backup on

weekdays and a full backup at the weekend.

An incremental backup consists of the current database files (dbm.*) plus the

consolidated update logs that have accumulated since the last incremental or full

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

14 Chapter 2: ViewDS tools

backup. Restoring from an incremental backup involves restoring the saved database

files to disk and then replaying the update logs generated since the backup.

A full backup comprises a full dump of the database in Stream DUA insert format.

Restoring from a full backup involves reloading using the ViewDS Fast Load (vfload)

utility and replaying the update logs collected since the backup.

For more information about backup operations, see the ViewDS Directory: Installation

and Operation Guide.

Synopsis

dbbackup [-t vfhome] [-c] [-f tapedevice]

Options

-t vfhome Uses vfhome as the ViewDS root directory instead of the value

set by the environment variable ${VFHOME}.

-c Sets to continuous operation mode. This mode avoids shutting
down the directory by using the Stream DUA save command to

make a copy the /data directory safely. The directory remains

available and the backup reflects the state of the database when
the save command was invoked.

-f tapedevice Sets the name of the tape device for the backup files.

DSA utility

The DSA utility allows you to start and stop the DSA from the command line when the

ViewDS Management Agent is unavailable.

NOTE: If you use this utility to stop a DSA that was started by the RAS (for example, through

the ViewDS Management Agent) then the RAS will restart the DSA immediately.

Synopsis

dsa [-t vfhome] [-c] [-r] [-i | -u] [-n service-name] [stop]

Options

-t vfhome Uses vfhome as the ViewDS root directory instead of the value set

by the environment variable ${VFHOME}.

-c Runs the DSA with default values rather than those stored in the

operational parameters file (see page 17).

-r Starts the DSA without opening the database.

-i Installs the DSA as a Windows service.

-u Uninstalls the DSA as a Windows service.

-n service-

name

Specifies the DSA with the given Windows service-name, rather

than the one derived from the keybase parameter in the

configuration file (see 38).

stop Stops the DSA if it is running (or cleans up a crashed DSA).

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 2: ViewDS tools 15

Printing DUA

The Printing DUA extracts data from ViewDS and prepares it for other applications. It

can sort data, tag data items, and insert text and other formatting information. The

resulting data can then be used, for example, with a desktop publishing package to

produce a printed directory listing.

The Printing DUA reads a script from a specified file that contains a sequence of

enquiry operations for the DSA. The script indicates the entries and attributes to be

output, the sorting parameters, and the tags, text, and formatting to be inserted. By

convention, the file extension is .ds, and the output is directed to a similarly named

file with the extension .do.

Synopsis

pdua [-t vfhome] [-a | -u username –p password]

[-b baseobject] [-r requestor] [-o address]

[-e errorfile] [-f outputfile] [inputfile]

Options

-t vfhome Uses vfhome as the ViewDS root directory instead of the value

set by the environment variable ${VFHOME}.

-a Authenticates to the DSA using anonymous credentials.

-u username Sets the user name with which the Printing DUA authenticates to

the DSA. The user name is either the value of a
viewDSUserName attribute or the DN of an entry in Stream

DUA notation enclosed in curly brackets.

-p password Sets the password with which the Printing DUA authenticates to

the DSA.

-b baseobject Sets the starting point in the DIT from where the Printing DUA

generates a report. This option overrides the base-object option

in the input script.

-r requestor Enables proxy authorisation for each request sent to the DSA,
using requestor as the identity when access controls are

evaluated.

-e errorfile Sets the name of the file for error messages from the Print DUA.

-f filename Sets the name of the file for all normal output from the Print

DUA. When this option is not specified, std out is used.

-o dsaAddress Connects to dsaAddress instead of the address specified by

the configuration-file parameter dsaaddress (see page 38).

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

16 Chapter 2: ViewDS tools

SNMP proxy agent

This is a proxy SNMP agent designed to present the SNMP services of a number of

DSAs as a single DSA to an SNMP manager.

Synopsis

proxy -p proxyAddress {-a agentAddress} [-t timelimit]

[-r resends]

Options

-p proxyAddress Sets the address the SNMP manager console will use to talk to

the proxy. This option is mandatory.

-a agentAddress Sets the address of an agent being proxied. Multiple -a

options are permitted. If no agents are specified, the proxy
looks for ${VFHOME}/setup/config and assumes there is a

DSA agent listening on the snmpagent address (see Address

parameters on page 41).

-t timelimitr Sets the time limit for how long the proxy will wait for a

response from an agent before resending to, or timing out, the

agent. The time is given in hundredths of a second. The

default is 50 (half a second).

-r resends Sets the number of times the proxy will try resending a request

to an agent that has not responded within the time limit. The

default value is 1.

smerge – sort update log files

This script (Solaris and Linux) or program (Windows) sorts the transactions in an

update log according to the order in which they were committed to the database. It is

required because updates are written to the update log when an operation is

completed. In order to replay an update log, its contents must first be sorted according

to when each update started.

If the script is run without any update logs specified at the command line, it waits for

the name of the file to be entered. The output from smerge is written to stdout.

Synopsis

smerge filename...

Example

smerge unsorted-ulog > sorted-ulog

 17

Chapter 3

 Configuring ViewDS

This chapter includes details of the ViewDS configuration parameters. All parameters

can be accessed from the command line and most can be access from the ViewDS

Management Agent.

This chapter describes:

• DSA runtime settings

• Communications configuration

• ViewDS configuration file

DSA runtime settings

The Directory System Agent (DSA) runtime settings affect performance and memory

requirements, and whether log files are generated. It is usually unnecessary to change

the default configuration. However, some changes may help tune a system according

to its host and data.

Modifying runtime settings

The DSA must be running before its runtime settings can be modified through the

DSA Controller. They can, however, also be modified through the ViewDS Fast Load

tool (see page 11) if the DSA is not running.

The DSA can be started or stopped through either:

• the Remote Administration Service (RAS) at the command line (see page 11) or the

ViewDS Management Agent; or

• the DSA utility (see page 14).

Its runtime settings can be modified through either ViewDS Management Agent or the

DSA Controller (see page 8).

If necessary, the DSA can be started with the DSA utility’s -c option so that it starts

with default values for the runtime settings.

Runtime settings file

The DSA’s runtime settings are stored in a binary file:

${VFHOME}/setup/cmsrv.cfg

where ${VFHOME} is the location of ViewDS.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

18 Chapter 3: Configuring ViewDS

dsa process

The dsa process is a multi-threaded process comprising the main dsa thread and one

or more dot threads.

The dsa is normally started through the RAS (for example, using the ViewDS

Management Agent) or DSA utility (see page 14). It automatically starts its

subordinate processes and reports whether the DSA has started successfully.

The dsa threads are:

dsa Handles all communications with client applications and peer servers. It initiates

and controls the state of the dot threads, queues and coordinates the

processing of requests, and can manage the state of the database.

dot The dot (Directory Operation Thread) threads receive and process requests

from the dsa. The dot threads will retrieve or update data from the database in

order to satisfy requests from client applications. They also provide ViewDS’s

flexible searching capabilities.

The number of dot threads running can be configured; the default number of

dot threads is three and the maximum is 5.

DSA runtime settings

The DSA runtime settings are modified using the DSA Controller’s set, setwrite, or

write commands (see page 9); or through the ViewDS Management Agent. The

settings are described in alphabetical order below.

NOTE: If a setting can be accessed through the ViewDS Management Agent, the name

displayed by the interface is shown in brackets.

alog

Controls whether activity records are logged. If it is set to on, all binds to the directory

and all operations are recorded in the system-activity log (alog.*). This log is used to

generate usage bills (see Billing statistics on page 11).

NOTE: This setting cannot be accessed through the ViewDS Management Agent.

async (Async mode)

Deprecated.

• In pre-7.4 systems a value of on (asynchronous) is recommended.

• In 7.4 and above systems this setting is not used.

bindtimeout (Bind timeout)

The time-out period for all initiated connection attempts. If a non-zero value is

specified, then the DSA will abort any initiated connection attempts that have seen no

activity for the number of seconds indicated by bindtimeout.

If this option is not set but the disptimelimit and dsptimeout options are set,

then the appropriate specific limit will be used to timeout initiated connection attempts.

cache (Cache size)

Sets the size of the memory cache used by the database.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 19

The larger the cache, the less the database will need to access the disk, and the

faster the response time. The cache should therefore be made as large as possible,

ideally to the point where the entire database can be held in memory.

The following is a rough calculation for the amount of available memory, and therefore

the suggested cache size:

available memory = maximum memory - 6 - (12 x DOTs)

where:

• available memory is the amount of available memory in MB

• maximum memory is the maximum amount of RAM on the DSA's host in MB

• 6 is the space required in MB for the DSA process (excluding the DOT threadss)

• 12 is the space required in MB for each DOT thread

• DOTs is the number of DOT threads

If this calculation gives a negative number, consider adding more RAM to the host

system. Otherwise, set the cache to this number.

If the cache is too small, there is a serious effect on performance. If the available

memory for the memory cache is less than 10% of the expected size of the database,

then the host system needs more RAM.

clog

Deprecated.

daptimeout (DAP timeout)

The time-out period for an inactive connection to a DUA. When there have been no

requests from a DUA for the number of seconds defined by this setting, the

connection is unbound.

If set to zero, then there is no time-out period.

If either of the following are lower than this time-out period, then they override it:

• the default time-out for the DUA (see the defaultEntitlement attribute in the

Technical Reference Guide: User Interfaces)

• the time-out set in the DUA client

However, the above have no effect if they are greater than daptimeout.

disptimelimit (DISP time limit)

The time-out period for an idle or unresponsive DISP connection. If a non-zero value

is specified, then the DSA will abort any DISP connection that has seen no activity for

the number of seconds indicated by disptimelimit. The value should be greater

than the time a total refresh would be expected to take.

The disptimelimit with respect to DISP behaves in a similar way to the

dsptimeout with respect to DSP.

If set to zero, then there is no time-out period.

dots (Dot threads)

The number of dot (Directory Operation Thread) threads running on the DSA.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

20 Chapter 3: Configuring ViewDS

Each dot thread handles database queries synchronously. By having multiple dot

threads, the DSA can process queries asynchronously – that is, multiple queries can

be processed simultaneously.

There are implications to having different numbers of dot processes:

• 3 dot threads: The default setting. Having more than three DOT threads might

improve throughput, but it will be at the expense of memory use.

• 2 dot threads: If the system is low on memory, try running with two DOT threads.

• 1 dot threads: This setting is appropriate for single-user operation, but it will slow

throughput with multiple users. More than one DOT thread is required for replication

and is strongly recommended for distributed operations in order to prevent the DSA

deadlocking.

Three or four dot threads will deliver the best performance for a non-distributed DSA

with a high query load.

dotsize (Max dot size)

This is the maximum size that a dot thread can reach before it is restarted.

The size of a dot thread increases according to the size of each query it receives. If a

dot receives a query that takes it above the dotsize, it will handle the query and

then restart. It is more efficient to have a dotsize that avoids this scenario.

The default is 20MB.

dsptimeout (DSP timeout)

The time-out period for an idle or unresponsive connection to another DSA. When no

activity has occurred for the number of seconds defined by this setting, the connection

is unbound. If set to zero, then there is no time-out period.

heapsize (Max heap size)

This specifies the maximum amount of heap memory all the DOTs combined can be

allocated at any given time in MB. Operations that take the heap memory allocation

over this limit will be aborted.

The default is 2048MB (except 32-bit Windows for which it is 1800MB).

key (Key)

The key used to encrypt users' passwords in dumps and logs. This setting is a 32

character hexadecimal string encoding a 16 byte AES key.

If no key is specified a default is used.

optimistic (Concurrency)

Sets optimistic concurrency mode to on or off:

• on – the database is in optimistic mode, which gives priority to the first update to

complete (it favours updates that take less time to complete).

• off – the database is in locking mode, which gives priority to the first update to

start (it favours updates that take more time to complete). Locking mode is

recommended for a DSA in a replication agreement, because it will need to perform

update transactions larger than a normal DAP/LDAP update transaction.

Default: on (optimistic mode).

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 21

qlog (Query logging)

Controls whether query operations are logged.

When query logging is on, all attempted query operations are written to the query log.

The query log is useful when monitoring performance, tracking problems or building a

file of typical queries.

The setting is normally off. If it is left on, however, the query log will grow very quickly

and the available disk space will need to be carefully monitored.

recovery (Recovery)

Determines whether the database writes temporary information to disk for every

update transaction. This temporary information allows the database to recover all

committed transactions even if the host or database process fails during a transaction.

NOTE: For ViewDS to operate reliably, recovery must be on. Recovery can only be set to off

for the current invocation of the DSA. The off setting is never saved.

safe-size (Save size)

The safe file is a database recovery log. It contains details of database transactions

that are waiting to be committed. After a crash or improper shutdown, the DSA uses

the safe file to recover the database before reopening it.

The safe file should be set to a size that will accommodate the largest anticipated

transaction. Even though the file grows to accommodate larger transactions, it is

advisable to pre-allocate disk space to ensure efficient performance.

A larger size results in faster database writes, but slower database restarts; and a

smaller size results in slower writes, but faster restarts. The minimum size is 1 MB,

and the default is 8 MB. (The size for the demonstration directory, Deltawing, is 2 MB.)

Changing the safe file size

The size of this file can only be changed when the database is closed. To change its

size to m MB:

dsac close init m open

The new size is automatically recorded in the runtime settings file (see page 17) and

becomes the new default for the next time the init command is used without

parameters.

searchalias

Deprecated.

sessions (Max sessions)

The maximum number of simultaneous user connections to the DSA (excluding

sessions by the super-administrator). The user connections may include DUAs, LDAP

clients, other DSAs and the RAS.

If this setting is set to a value that is less than the current number of connections, the

current connections can continue. However, no new connections are permitted until

the number of connections falls below the new setting. The value -1 means there is

no limit on the number of connections.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

22 Chapter 3: Configuring ViewDS

sizefactor (SEP size factor)

This setting allows you to control the trade-off between the response time and the

success of a search operation.

The setting’s value is a multiplication factor that the DSA applies to whichever of the

following is the smallest:

• the DSA’s sizeLimit (see page 22); or

• the size limit in a DUA’s search request.

The resulting ‘calculated size limit’ is the limit on the number of candidate entries the

DSA will inspect during a search.

To put this in context, consider what happens when the DSA evaluates a search. It

starts by applying all indexed terms in the search filter. It then determines whether the

number of candidate entries is:

• less than the ‘calculated size limit’ – in this case, the DSA inspects each candidate

entry and applies the remaining terms in the search filter.

• greater than the ‘calculated size limit’ – in this case, the DSA returns a partial result

and the message ‘size limit exceeded’.

sizelimit (Size limit)

The maximum number of entries the DSA will return in response to a search or list

operation. The default value is 2000. If either of the following are lower than this size

limit, they override it:

• the default size limit for the DUA (see the defaultEntitlement attribute in the

Technical Reference Guide: User Interfaces)

• the size limit set in the DUA client

However, the above have no effect if they are greater than sizelimit.

timelimit (Time limit)

The DSA's time limit (in seconds) for a DUA user's read, compare, search and list

operations. A normal value is 5 seconds. A value of -1 means there is no time limit. If

either of the following are lower than this time limit, they override it:

• the default time limit for the DUA (see the defaultEntitlement attribute in the

Technical Reference Guide: User Interfaces)

• the time limit set in the DUA client

However, the above have no effect if they are greater than timelimit.

ulog (Update logging)

Determines whether update operations are logged. The update log contains all users’

update operations (add, remove, modify, move or rename an entry) and is critical for

maintaining database integrity after a failure. After restoring a backup, replaying this

log updates the database according to all committed transactions since the backup

was made.

It is essential to log updates for database recovery from a backup (see the ViewDS

Directory: Installation and Operation Guide). This setting should always be on.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 23

updates (Max updates)

The number of DOT threads that process update operations simultaneously. The

maximum number of updates:

• cannot exceed the number of DOT threads.

• should be less than the number of DOT threads to ensure that some DOT threads

are always available for queries. Otherwise, during heavy updating, the directory

may be too slow in responding to queries.

• should be set to 1 for normal operation.

• should be set to 0 to disable updates to the database.

• should be greater than 1 for a DSA in a replication agreement. (For distributed

operations, this setting avoids deadlocks while processing a chained update

operation. For replication, this setting avoids DAP/LDAP update operations having

to wait for considerably longer than normal while replication updates are

processed.)

Communications configuration

The ViewDS processes communicate with each other using either an OSI Stack or the

ViewDS TCP/IP-based Lightweight Stack (LWS). Both are configured through the

addressing parameters in the configuration file.

This section describes the different ViewDS communications options. It describes

addressing and address formats, how to set up LDAP access, and how to enable OSI-

based communications between ViewDS components and between ViewDS and other

X.500 products. It describes:

• ViewDS and OSI

• Configuring for LDAP access

• Configuring for XLDAP access

• Configuring for SNMP access

• Configuring for SPML access

• Addressing

ViewDS and OSI

The DSA and Stream DUA include a built-in upper layer OSI stack. Both automatically

communicate over OSI if the address they are connecting to is an OSI address.

Installation and configuration

ViewDS’s OSI stack needs no special configuration other than setting up OSI

addresses as follows:

• Set the dsaaccesspoint and dualocal parameters (see Address parameters

on page 41) to be OSI presentation addresses.

• If the DSA has knowledge of other DSAs and will use OSI to communicate with

them, set up (or change) the knowledge references (see Chapter 7) and

myAccessPoint operational attribute to be OSI presentation addresses.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

24 Chapter 3: Configuring ViewDS

Reserved ports and RFC 1006

If you are using RFC 1006 and have configured the listening port to a value below

1024, run the DSA as root. This is necessary because most host operating systems

will not allow user processes to listen on a reserved port below 1024.

Configuring for LDAP access

The native X.500 access protocol is Directory Access Protocol (DAP). The Lightweight

Directory Access Protocol (LDAP) can also be used to connect to an X.500 directory

such as ViewDS.

LDAP is an internet protocol defined by the Internet Engineering Task Force (IETF). It

offers similar functionality to X.500 (1988), but has a simpler treatment of data types

(by treating everything as strings) and makes no use of an OSI stack (sending LDAP

PDUs directly over TCP/IP).

The LDAP protocol defined in RFCs 1777–79 is referred to as LDAP Version 2

(LDAPv2). A new version of LDAP known as version 3 (LDAPv3) is defined in RFCs

2251–55, and an update to these specifications is defined in RFCs 4510–19.

ViewDS supports LDAPv2 and LDAPv3 client access to the DSA. LDAPv2 support

does not include CLDAP, Kerberos, or LDAP referrals. LDAPv3 support includes

UTF-8 encoding, referrals as URLs, all protocol changes and all syntax representation

changes.

Enabling LDAP access

To enable direct LDAP access:

• Define a value in the configuration file (see page 38) for ldapaddress, or

sldapaddress if SSL LDAP is required, or both.

• For Solaris or Linux, if ldapaddress or sldapaddress specify a port below 1024

(such as the IANA-assigned standard port for LDAP of 389), ensure the DSA is

started as root. This is necessary because these operating systems will not allow a

user process to listen on a port number below 1024.

LDAP controls

LDAP Version 3 defines a mechanism for extending the functionality of LDAP

operations. A number of LDAP controls have been defined in RFCs and Internet

Drafts. The following controls are included in the ViewDS LDAP implementation.

LDAP control Description

Server-side sorting of search

results (as defined by RFC

2891)

Allows an LDAP client to request the directory

server to sort the results to a search request before

returning them to the LDAP client.

Paged search results (as

defined by RFC 2696)

Allows an LDAP client to request the directory

server to only return a subset, or page of the

results, of a search request. The LDAP client can

then repeat the request, asking for the next page of

results. The size of the page (the number of entries

in each page of results) is specified by the LDAP

client in its request.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 25

LDAP control Description

Proxied authorization (as

defined by Internet Draft draft-

weltman-ldapv3-proxy-09.txt)

Allows an LDAP client with suitable permissions to

make LDAP requests on behalf of different users

without having to bind as each of the users. This is

designed for an application which uses the directory

as a repository of information where the application

takes responsibility for authenticating its users and

wishes the directory to apply authorization decisions

on its accesses to the directory data as if it were

that user.

Password policy management

(as defined by Internet Draft

draft-behera-ldap-password-

policy-05.txt)

Provides enhanced security to LDAP clients and

applications. For further information, see LDAP

password management on page 129.

Virtual List View (as defined

by Internet Draft draft-ietf-

ldapext-ldapv3-vlv-09.txt)

A Virtual List View is a way to return a set of data to

a third-party application. The set of data is specified

by either an LDAP or XLDAP search operation.

For example, an email client can be configured to

make an LDAP connection to ViewDS, extract the

entries identified by a Virtual List View defined at

the DSA, and use them to populate its address

book.

LDAP Extended Operations

LDAP Version 3 defines a mechanism for extending the functionality of the LDAP

protocol by defining new extended LDAP operations.

The ViewDS LDAP implementation includes the LDAP Extension for Transport Layer

Security (as defined by RFC 2830).

ViewDS extensions

ViewDS’s implementation of LDAP Version 2 includes extensions to the LDAP

specification of RFCs 1777–1779:

• The functionality of the X.500 (1993) ModifyDN operation is available: non-leaf

entries can be renamed, and entries or whole subtrees can be moved. There is no

protocol change needed to rename non-leaf entries – ViewDS simply allows it

whereas strict LDAP would refuse it. To move an entry or subtree to a new superior

requires the name of the new superior to be provided as though the LDAP

ModifyDNRequest PDU were defined as:

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {

 entry LDAPDN,

 newrdn RelativeLDAPDN,

 deleteoldrdn BOOLEAN,

 newSuperior [0] LDAPDN OPTIONAL }

• Attributes with an unknown syntax (or a syntax without a text mapping) are returned

as text strings in ASCII hex format if the configuration-file parameter

ldapasciihex is on (it is off by default) and the connection is using LDAPv2.

This includes attributes with Certificate syntax.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

26 Chapter 3: Configuring ViewDS

The behaviour of some LDAP clients does not fully conform to LDAP specifications.

ViewDS will, where possible, include non-standard extensions to support these LDAP

clients. The configuration-file parameter strictldap allows these non-standard

extensions to be disabled and enforces strict compliance to the LDAP specification.

This option is off by default.

Configuring for XLDAP access

The XML Lightweight Directory Access Protocol (XLDAP) is one of the XML Enabled

Directory (XED) protocols and is defined in the IETF Internet Draft, XED: Protocols

(draft-legg-protocols-xx.txt).

XLDAP is an internet protocol based largely on LDAP Version 3 and defined by the

Internet Engineering Task Force (IETF). XLDAP offers the same functionality as LDAP

Version 3, but encodes PDU’s using an XML-based encoding rule, Robust XML

Encoding Rules (RXER). XLDAP does not use an OSI stack; it sends XLDAP PDUs

directly over TCP/IP using a SOAP or IDM-style framework.

ViewDS supports XLDAP access to the DSA either using a SOAP or IDM-style

framework. Both frameworks operate over a TCP/IP connection.

Enabling XLDAP access

To enable direct XLDAP access in the DSA:

• Define a value in the configuration file (see page 38) for the parameter

soapaddress or xldapaddress depending on the transport framework to be

used. Alternatively, use both.

• For Solaris or Linux, if xldapaddress or soapaddress specifies a port below

1024, ensure the DSA is started as root. This is necessary because these operating

systems will not allow a user process to listen on a port number below 1024.

XLDAP controls

LDAP Version 3 defines a mechanism for extending the functionality of the LDAP

operations. A number of LDAP controls have been defined in RFCs and Internet

Drafts. The following LDAP Controls are implemented in the ViewDS XLDAP

implementation.

XLDAP control Description

Server-side sorting of

search results (as

defined by RFC 2891)

Allows an XLDAP client to request the directory server to

sort the results to a search request before returning the

results to the XLDAP client.

Paged search results

(as defined by RFC

2696)

Allows an XLDAP client to request the directory server to

only return a subset or page of the results of a search

request. The XLDAP client can then repeat the request,

asking for the next page of results. The size of the page

(the number of entries in each page of results) is specified

by the XLDAP client in its request.

Proxied authorization

(as defined by Internet

Draft draft-weltman-

ldapv3-proxy-09.txt)

Allows an XLDAP client with suitable permissions to make

XLDAP requests on behalf of different users without having

to bind as each of the users. This is designed for an

application which uses the directory as a repository of

information where the application takes responsibility for

authenticating its users and wishes the directory to apply

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 27

XLDAP control Description

authorization decisions on its accesses to the directory data

as if it were that user.

Password policy

management (as

defined by Internet

Draft draft-behera-ldap-

password-policy-05.txt)

Provides enhanced security to XLDAP clients and

applications. For further information, see LDAP password

management on page 129.

XLDAP Attribute

Selection Control

The Attribute Selection control is defined in the XED

specification, which is yet to be published with the IETF.

In LDAP, a client can include the asterisk character value
(*) of the attribute selection in a search request. This

character indicates that all user attributes are to be

returned. Many implementations also use the plus character
(+) to indicate that they would like all operational attributes

to be returned.

As the ‘attributes’ field of an XLDAP SearchRequest

expects Object Identifiers (as opposed to a string value in
LDAP), the ‘*’ and ‘+’ characters cannot be used to request

all users and/or operational attributes.

This XLDAP control allows you to specify to the DSA that all

user and/or operational attributes are to be returned.

Virtual List View (as

defined by Internet

Draft draft-ietf-ldapext-

ldapv3-vlv-09.txt)

A Virtual List View is a way to return a set of data to a third-

party application. The set of data is specified by either an

LDAP or XLDAP search operation.

For example, an email client can be configured to make an

LDAP connection to ViewDS, extract the entries identified

by a Virtual List View and use them to populate its address

book.

XLDAP extended operations

XLDAP does not currently support any extended operations.

Configuring for SNMP access

A ViewDS DSA may be configured as an agent for the Simple Network Management

Protocol (SNMP). The DSA supports Community-based SNMP Version 2 (SNMPv2c)

as defined in RFC 1901, and supports all the managed objects from the Network

Services Monitoring MIB (RFC 2248) and Directory Server Monitoring MIB

(RFC 2605).

To enable the DSA as an SNMP agent, define a value in the configuration file (see

page 38) for the parameter snmpagent. This option determines the address of the

UDP port the DSA will listen on for SNMP requests from an SNMP manager or SNMP

proxy agent. The value for this parameter is an address in the form host:port. For

example:

snmpagent = localhost:3000

The SNMP manager needs to be configured to poll this address for information about

the ViewDS DSA.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

28 Chapter 3: Configuring ViewDS

The maximum size for an SNMP request that the DSA agent can receive is 4096

bytes. The maximum size for an SNMP response that the DSA agent will send is set

by the configuration-file parameter snmpmaxpdusize (see page 38). If this option is

omitted, the default maximum size for responses is 484 bytes.

One of the managed objects defined by RFC 2248 is an application index, which is

used to distinguish between the various applications being monitored. Each DSA

being monitored counts as one application and must have a unique application index.

The application index for the DSA is set by the configuration-file parameter

snmpapplindex. Its value must be a number greater than zero (the default is 1).

Normally, the application index only needs to be set for the second and subsequent

DSAs being monitored, if any.

Multiple DSAs

If you have multiple DSAs, each can be set up as an independent SNMP agent.

Alternatively, ViewDS includes an SNMP proxy agent that allows multiple DSAs to be

monitored through a single agent – the SNMP proxy agent (see page 16).

Configuring for SPML access

ViewDS supports the DSMLv2 profile of SPML version 2.0 (SPMLv2). SPMLv2

requests are received on the DSA's SOAP address port (see page 42). This port is the

only configuration required for an existing directory tree. Even though SPMLv2 could

be used to create a directory tree from scratch, it is simpler to create an initial

organisation entry and make it a subschema administrative point using the ViewDS

Management Agent.

With respect to the DSMLv2 profile, the mandatory core operations of SPMLv2 are

supported – listTargetsRequest, addRequest, modifyRequest,

deleteRequest and lookupRequest. Of the optional capabilities only the search

(searchRequest) and suspend (suspendRequest, resumeRequest and

activeRequest) capabilities are currently supported.

listTargetsRequest

The listTargetsRequest reports two targets, named Directory/DN and

Directory/ID, which differ only in how provisioning service objects (PSOs) – i.e.

directory entries – are identified:

• Directory/DN target – PSO identifiers are always LDAP Distinguished Names.

• Directory/ID target – PSO identifiers are client provided strings or UUIDs.

Although there are two targets, there is only one collection of entries. The advantage

of the Directory/ID target is that the PSO identifiers are immutable. However, the use

of LDAP DNs as PSO identifiers, as in the Directory/DN target, is more commonly

used by other implementations. The Directory/DN target is slightly more efficient than

the Directory/ID target.

addRequest

The addRequest creates a new entry. An SPMLv2 client has the option to provide a

PSO identifier for the new entry with the addRequest. The requirements for the

identifier differ, however, according to the target used to create the entry – as does the

DSA’s behaviour when the client does not provide it.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 29

Directory/DN target

If the client supplies a PSO identifier for a new entry, it must be an LDAP DN.

If the client does not supply a PSO identifier, the DSA assigns naming attributes for

the new entry’s RDN. It does so by selecting from the set of attributes provided in the

addRequest in accordance with the schema (name forms and structure rules) that

apply at the container entry nominated in the addRequest.

The DSA selects the first name form that fits with the provided attributes. If more than

one name form is applicable, then the SPMLv2 client can only control which is actually

used by providing the new PSO's identifier in the addRequest.

Directory/ID target

If the client supplies a PSO identifier for a new entry, it can be any character string.

The DSA will check that the string is unique across the entire collection of directory

entries. If it is not unique, the request will fail. Otherwise, the DSA will subsequently

use the string as the entry’s PSO identifier when it is accessed through the

Directory/ID target.

If the client does not supply a PSO identifier, the DSA will generate and return a UUID

URN to identify the PSO, which will also be the UUID in the entryUUID attribute of the

underlying directory entry. The DSA will subsequently use the UUID URN as the

entry’s PSO identifier when it is accessed through the Directory/ID target.

The new entry’s RDN is determined in the same way as under the Directory/DN

target.

Accessing the new entry

Irrespective of which target is used to create an entry, it can be subsequently

accessed through either. The Directory/DN target always requires the LDAP DN of the

entry. If the client provided a string as the PSO identifier, then the Directory/ID target

will always use that string; otherwise, it will use the entry's UUID.

suspendRequest and resumeRequest

The suspendRequest and resumeRequest allow a user account to be suspended

or reactivated later at a specified time (the effective date).

SPMLv2 does not have a standardised method to either examine or cancel pending

requests. However, ViewDS applies the following rule to provide more control to an

SPMLv2 client:

When a suspend or resume request is successfully accepted, any pending suspend or

resume request with an effective date that is the same as, or after, the effective date of the

current request is cancelled.

A non-trivial sequence of suspend and resume events can be set up by issuing the

requests in the order of ascending effective dates. ViewDS can queue, and action at

the nominated time, any number of such requests. The entire sequence can be

cancelled by issuing a suspend or resume request without an effective date (which

defaults to the current time). A trailing part of the sequence can be cancelled by

issuing a suspend or resume request with an effective date equal to the beginning of

the trailing sequence.

If a request’s effective date is earlier than the current time at the DSA, then the

effective date is taken to be the current time.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

30 Chapter 3: Configuring ViewDS

Addressing

Protocol stacks

ViewDS processes communicate with each other using a layered protocol stack. At

the top of the stack are the X.500 protocols: Directory Access Protocol (DAP),

Directory System Protocol (DSP), etc.

These protocols may be carried over either an OSI Stack, IDM Stack, XIDM Stack,

HTTP, an IDM style transport for XLDAP, LDAP, SLDAP or ViewDS’s TCP/IP-based

Lightweight Stack (LWS). For each of the stacks, there are further choices as to the

transport and network used to carry the communications.

There are ten possible combinations of stack and transport/network in a ViewDS

installation:

• OSI stack using RFC 1006 (with RFC1277 addressing)

• LWS using TCP/IP

• LWS using Unix-domain sockets

• LDAP using TCP/IP

• SLDAP using TCP/IP

• IDM using TCP/IP

• XIDM using TCP/IP

• IDM style transport using TCP/IP as a transport for XLDAP

• SOAP using TCP/IP (using HTTP) as a transport for XLDAP

• SOAP using TCP/IP (using HTTP) as a transport for SPML

NOTE: The TCP/IP combinations can use either TCP/IP version 4 or version 6.

Each of above combinations has a specific address format (except for the last two

which both use the same address format).

The DSA must have a dsaaddress defined and this is usually a Lightweight Stack

address. All other settings depend on what is in the configuration file – the default

configures OSI, IDM, LDAP, XLDAP, SOAP and Lightweight Stack ports.

Presentation addresses

Addresses in an OSI application like X.500 are called presentation addresses. A

presentation address is the address of an OSI application-layer communications

entity, and consists of three optional selectors called the p-selector, s-selector, and t-

selector (for presentation, session, and transport), and one or more network

addresses.

PresentationAddress ::= SEQUENCE {

 pSelector [0] OCTET STRING OPTIONAL,

 sSelector [1] OCTET STRING OPTIONAL,

 tSelector [2] OCTET STRING OPTIONAL,

 nAddresses [3] SET SIZE (1..MAX) OF OCTET STRING}

The pSelector, sSelector, and tSelector arguments are arbitrary strings,

typically only a few characters long or absent altogether. The nAddresses argument

is a list of network addresses, each for a different network; however, ViewDS will

make use of only the first address in the list if multiple addresses are given.

For example:

 address {

 sSelector '0403'H,

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 31

 tSelector '0402'H,

 nAddresses { '49520086FF01'H }

 }

The Lightweight Stack does not make use of the selectors (they are ignored if

present).

Network addresses

The nAddresses field in a presentation address holds one or more network

addresses (NSAPs). An NSAP is a maximum of 20 bytes (40 hexadecimal digits) in

length – its format is described in X.213 Annex A and ISO 8348 Addendum 2 – and

includes the following components:

• AFI – Authority and Format Identifier (two digits)

• IDI – Initial Domain Identifier (fixed length which depends on AFI)

• DSP – Domain Specific Part (variable length)

The AFI is a two-digit number in the range 36 to 59. It defines the authority that

allocates the remainder of the NSAP, indicates whether leading zeros in the IDI are

significant, and whether the DSP has a binary or decimal or other syntax.

The AFI and IDI together are referred to as the IDP (Initial Domain Part). The IDP is

given in BCD-encoded decimal digits, which identify the addressing authority for the

remainder of the NSAP.

URI representation

The format shown above is a suitable for specifying an address using the Stream DUA

(for example, when configuring knowledge). However, a simplified address

representation, based on the Uniform Resource Identifier (URI), can be used when

specifying an address in the configuration file (see page 38), with Stream DUA or from

the command line.

The URI representation can take the following forms:

• OSI-RFC1006 with one nAddress

• OSI (general)

• Deprecated string representation

OSI-RFC1006 with one nAddress

This form is for an RFC 1006 address with a single network address. The address is

constructed as follows:

osi://host[:port][/tsel[,ssel[,psel]]]

where:

• host is either a host name or a host address in dotted decimal notation.

• port is the IP port. The default is port 102.

• tsel, ssel and psel are the transport, session and presentation selectors.

The latter are either:

• Strings of hex digits (upper or lower case) followed by the letter ‘H’ (if only H is

present, the selector is present as an empty string).

• An ASCII string of alphanumeric characters plus '-' and '_' not ending in 'H'.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

32 Chapter 3: Configuring ViewDS

OSI (general)

This is a general representation for any presentation address constructed as follows:

osi:{nAddresses}[/tsel[,ssel[,psel]]]

The selectors are strings of hex digits (upper and lower case) followed by the letter H

(if only H is present, the selector is present as an empty string).

For example:

osi:{49520086FF01H}/0101H,,0202H

Deprecated string representation

The string representation described here is maintained for backward compatibility.

The URI representation described above should be used where possible.

The simplified string representation for an arbitrary presentation address consists of

four comma-separated items, the p-selector, s-selector, and t-selector (for

presentation, session, and transport), and one or more network addresses. Each item

is given in hexadecimal with a trailing ‘H’, and is omitted if absent. The network

address list is itself enclosed in braces with subsequent addresses separated by

commas.

For example, the following presentation address:

osi:{49520086FF01H}/0101H,,0202H

Has the following string representation:

{,0202H,0101H,{49520086FF01H }}

For Lightweight Stack (LWS) addresses, a much simpler string representation is

available (see following subsection).

Address formats

Each combination of stack and transport/network protocols has an address format

distinguished by its internal structure. Each combination is described below.

OSI stack using RFC1006 with IPv4

AFI IDI DSP

prefix

DSP Address

54 00728722 03 • Four-octet IP address, with three digits per octet.

• Port number (optional, defaults to 102, omit for

calling addresses).

• Transport set (1 for TCP; 2 for UDP). If absent,

TCP is implied and if the port is present a single

hex ‘F’ digit is added (which packs out the DSP to

a full octet).

For example, the OSI–RFC 1006 address of the host 137.147.17.39, listening on port

1025, is represented as:

address {

 nAddresses {'54007287220313714701703901025F'H}

}

And the string representation is: osi://137.147.17.39:1025

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 33

OSI stack using RFC1006 with IPv6

This format is based on Internet Draft draft-pandey-osidirectory-ipv6-nsapa-format-

00.txt because the alternative encodings offered in RFC 1888 do not allow for the port

number to be included in the NSAP address.

AFI IDI DSP

prefix

DSP Address

35 99 None • Sixteen-octet IP address, hex encoded.

• Hex encoded port number (optional, defaults to

port 102, omit for calling addresses).

For example, the OSI–RFC 1006 address of the host fe80::2b0:d0ff:fed0:d730,

listening on port 1025, is represented as:

address {

 nAddresses {'3599FE8000000000000002B0D0FFFED0D7300401'H }

}

And the string representation is: osi://[fe80::2b0:d0ff:fed0:d730]:1025

LWS using IPv4

AFI IDI DSP

prefix

DSP Address

40 07133999 11 • Four-octet IP address, with three digits per octet.

• Port number.

• Final digit is hex ‘F’.

For example, the LWS–TCP/IP address dsa.deltawing.com.au:3000 where

dsa.deltawing.com.au is 137.147.17.39 is represented as:

address {

 nAddresses { '40071339991113714701703903000F'H }

}

And the string representation is either of the following:

vlws://137.147.17.39:300

vlws://dsa.deltawing.com.au:3000

LWS using IPv6

AFI IDI DSP

prefix

DSP Address

40 07133999 21 • Sixteen-octet IP address hex encoded.

• Hex encoded port number.

For example, the LWS IPv6 address dsa.deltawing.com.au for port 3000, where

dsa.deltawing.com.au has the IPv6 address fe80::2b0:d0ff:fed0:d730, is represented

as:

address {

 nAddresses {

 ‘400713399921FE8000000000000002B0D0FFFED0D7300BB8’H

 }

}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

34 Chapter 3: Configuring ViewDS

And the string representation is:

vlws://[fe80::2b0:d0ff:fed0:d730]:3000

vlws6://dsa.deltawing.com.au:3000

LWS using Unix-domain sockets

AFI IDI DSP

prefix

DSP Address

40 07133999 10 • The remaining digits encode the ASCII integer

value of each character of the socket pathname,

using three digits per character.

• If there is an odd number of ASCII characters, a

final digit is added with value hex ‘F’.

For example, the LWS-Unix address /tmp/x500local is represented as:

address {

 nAddresses {

 '400713399910047116109112047120053048048108111099097108'H }

}

And the string representation is:

vlws:/tmp/x500local

LDAP address using IPv4

AFI IDI DSP

prefix

DSP Address

54 00728722 11 • Four-octet IP address, with three digits per octet.

• Port number (optional, defaults to port 389).

• Final digit is hex ‘F’.

For example, the LDAP address of the host 137.147.17.39, listening on port 1025, is:

address {

 nAddresses {'54007287221113714701703901025F'H}

}

And the string representation is: ldap://137.147.17.39:1025

LDAP address using IPv6

AFI IDI DSP

prefix

DSP Address

40 07133999 22 • Sixteen-octet IP address, hex encoded.

• Hex encoded port number (optional, defaults to

port 389, omit for calling addresses).

For example, the LDAP address of the host fe80::2b0:d0ff:fed0:d730, listening on port

1025, is represented as:

address {

 nAddresses {

 '400713399922FE8000000000000002B0D0FFFED0D7300401'H

 }

}

And the string representation is: ldap://[fe80::2b0:d0ff:fed0:d730]:1025

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 35

LDAP address using Unix-domain Sockets

AFI IDI DSP

prefix

DSP Address

54 00728722 12 • The remaining digits encode the ASCII integer

value of each character of the socket pathname,

using three digits per character.

• If an odd number of ASCII characters are used, a

final digit is added with value hex ‘F’.

For example, the LDAP-Unix address /tmp/x500local is:

address {

 nAddresses {

 '540072872212047116109112047120053048048108111099097108'H }

}

And the string representation is: ldap:/tmp/x500local

SLDAP address using IPv4

AFI IDI DSP

prefix

DSP Address

40 07133999 12 • Four-octet IP address, with three digits per octet.

• Port number.

• Final digit is hex ‘F’.

For example, the SLDAP address of the host 137.147.17.39 listening on port 1025 is:

address {

 nAddresses {'40071339991213714701703901025F'H}

}

And the string representation is: sldap://137.147.17.39:1025

SLDAP address using IPv6

AFI IDI DSP

prefix

DSP Address

40 07133999 24 • Sixteen-octet IP address, hex encoded.

• Hex encoded port number.

For example, the SLDAP address of the host fe80::2b0:d0ff:fed0:d730, listening on

port 1025, is represented as:

address {

 nAddresses {

 '400713399924FE8000000000000002B0D0FFFED0D7300401'H

 }

}

And the string representation is: sldap://[fe80::2b0:d0ff:fed0:d730]:1025

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

36 Chapter 3: Configuring ViewDS

IDM address using IPv4

AFI IDI DSP

prefix

DSP Address

54 00728722 10 • Four-octet IP address, with three digits per octet.

• Port number.

• Final digit is hex ‘F’.

For example, the IDM address of the host 137.147.17.39 listening on port 1025 is:

address {

 nAddresses {'54007287221013714701703901025F'H}

}

And the string representation is: idm://137.147.17.39:1025

IDM address using IPv6

AFI IDI DSP

prefix

DSP Address

40 07133999 23 • Sixteen-octet IP address, hex encoded.

• Hex encoded port number.

For example, the IDM address of the host fe80::2b0:d0ff:fed0:d730, listening on port

1025, is represented as:

address {

 nAddresses {

 '400713399923FE8000000000000002B0D0FFFED0D7300401'H

 }

}

And the string representation is: idm://[fe80::2b0:d0ff:fed0:d730]:1025

XIDM address using IPv4

The XML Internet Directly Mapped (XIDM) protocol is an IETF protocol defined in the

XED: Protocols document (draft-legg-xed-protocols-xx.txt). XIDM differs from the IDM

protocol only in that the protocol operations are encoded using the Robust XML

Encoding Rules (RXER) instead BER. In View500, XIDM is supported for the DAP

and DSP protocols.

AFI IDI DSP

prefix

DSP Address

40 07133999 14 • Four-octet IP address, with three digits per octet.

• Port number.

• Final digit is hex ‘F’.

For example, the XIDM address of the host 137.147.17.39 listening on port 1025 is:

address {

 nAddresses {'40071339991413714701703901025F'H}

}

And the string representation is: xidm://137.147.17.39:1025

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 37

XIDM address using IPv6

The XML Internet Directly Mapped (XIDM) protocol is an IETF protocol defined in the

XED: Protocols document (draft-legg-xed-protocols-xx.txt). XIDM differs from the IDM

protocol only in that the protocol operations are encoded using the Robust XML

Encoding Rules (RXER) instead BER. In View500, XIDM is supported for the DAP

and DSP protocols.

AFI IDI DSP

prefix

DSP Address

40 07133999 26 • Sixteen-octet IP address, hex encoded.

• Hex encoded port number.

For example, the XIDM address of the host fe80::2b0:d0ff:fed0:d730, listening on port

1025, is represented as follows.

address {

 nAddresses {

 '400713399926FE8000000000000002B0D0FFFED0D7300401'H

 }

}

And the string representation is: xidm://[fe80::2b0:d0ff:fed0:d730]:1025

XLDAP address over IP4

The XML Lightweight Directory Access Protocol (XLDAP) is an IETF protocol defined

in the XED: Protocols document (draft-legg-xed-protocols-xx.txt). XED protocol

defines two transport mechanisms for the XLDAP protocol.

AFI IDI DSP

prefix

DSP Address

40 07133999 15 • Four-octet IP address, with three digits per octet.

• Port number.

• Final digit is hex ‘F’.

For example, the XLDAP address of the host 137.147.17.39 listening on port 1025 is:

address {

 nAddresses {'40071339991513714701703901025F'H}

}

And the string representation is: xldap://137.147.17.39:1025

XLDAP address over IPv6

AFI IDI DSP

prefix

DSP Address

40 07133999 27 • Sixteen-octet IP address, hex encoded.

• Hex encoded port number.

For example, the XLDAP address of the host fe80::2b0:d0ff:fed0:d730, listening on

port 1025, is represented as:

address {

 nAddresses {

 '400713399927FE8000000000000002B0D0FFFED0D7300401'H

 }

}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

38 Chapter 3: Configuring ViewDS

And the string representation is: xldap://[fe80::2b0:d0ff:fed0:d730]:1025

XLDAP address over SOAP using HTTP (IPv4)

AFI IDI DSP

prefix

DSP Address

40 07133999 13 • Four-octet IP address, with three digits per octet.

• Port number.

• Final digit is hex ‘F’.

For example, the XLDAP over SOAP address of the host 137.147.17.39 listening on

port 1025 is:

address {

 nAddresses {'40071339991313714701703901025F'H}

}

And its string representation is: http://137.147.17.39:1025

XLDAP address over TCP SOAP using HTTP (IPv6)

AFI IDI DSP

prefix

DSP Address

40 07133999 25 • Sixteen-octet IP address, hex encoded.

• Hex encoded port number.

For example, the XLDAP over SOAP address of the host fe80::2b0:d0ff:fed0:d730,

listening on port 1025, is represented as:

address {

 nAddresses {

 '400713399925FE8000000000000002B0D0FFFED0D7300401'H

 }

}

And the string representation is: http://[fe80::2b0:d0ff:fed0:d730]:1025

ViewDS configuration file

The configuration file is a text file:

${VFHOME}/setup/config

where ${VFHOME} is where ViewDS is installed.

The parameters in the configuration file can be modified through a text editor or the

ViewDS Management Agent.

The parameters are grouped as follows:

• File system parameters

• Address parameters

• Access Presence configuration parameters

• Operational parameters

http://[fe80::2b0:d0ff:fed0:d730]:1025/

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 39

File system parameters

The configuration file includes path names that can be modified. There are usually

more configurable path names than distinct path names because several are usually

set to the same directory.

The ViewDS path names that can be configured are described below. A file name

shown with an asterisk (for example, alog.*) refers to the set of file names

generated if the Unix shell expands the * wildcard.

admpasswd This file stores the super-administrator password (see page 110).

Default: ${VFHOME}/general/deity

alogdir This directory contains the system activity log (alog.*).

Default: ${VFHOME}/logs/ activity

capath This file is used as the user’s CA Certificate. The CA Certificate is

required by the Stream DUA to construct a certificate path when

performing a strong authentication bind.

No default value.

catalog This file allows localization of error messages.

Defaults:

• ${VFHOME}/lib/catalog (Solaris or Linux)

• ${VFHOME}/lib/catalog.dll (Windows)

codetabs This file contains the tables required to translate characters

between various code pages and Unicode.

database This directory contains the DSA's database files (ddm.* and

p*.*).

Default: ${VFHOME}/data

dbmpath This directory contains the safe and scratch files.

Default: ${VFHOME}/data

dsacertificate This file contains the DSA’s certificate (corresponding to the
private key defined for dsaprivkey).

Default: ${VFHOME}/setup/dsa.cer

dsaprivkey This file contains the DSA’s private key (corresponding to the

public key in the DSA’s certificate).

Default: ${VFHOME}/setup/dsa.pk8

dsaprivpass This file contains the clear-text password required to decrypt the

DSA’s private key.

Default: ${VFHOME}/general/keyaccess

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

40 Chapter 3: Configuring ViewDS

dsatrusted This directory contains certificates of identities that the DSA will

grant super-administrator privileges to, if they have authenticated

using strong authentication. The identities should include the

RAS, which needs super-administrator privilege to shut down the

DSA.

Default: ${VFHOME}/setup/trusted

dumpdir This directory contains dump files (dib.*) generated when the

database is dumped. The files are in Stream-DUA format.

Default: ${VFHOME}/dump

errorlog This file contains the error log.

Default:

• ${VFHOME}/general/error (Solaris or Linux)

• ${VFHOME}/general/error.txt (Windows)

licensepath This file contains the ViewDS license key. Default:
${VFHOME}/setup/license.xml

printdir This directory contains print scripts used by Access Presence.

Default: ${VFHOME}/print

qlogdir This directory contains the query log.

Default: ${VFHOME}/logs

rascertificate This file contains the certificate for the RAS. The certificate
corresponds to the private key in rasprivkey.

Default: ${VFHOME}/setup/ras.cer

rasprivkey This file contains the private key for the RAS. The certificate
corresponds to the public key in rascertificate.

Default: ${VFHOME}/setup/ras.pk8

rasprivpass This file contains a clear-text password required to decrypt
rasprivkey.

Default: ${VFHOME}/general/ras.passwd

rastrusted This directory contains certificates of identities that can manage

the RAS. The identities should include the DSA, which will

attempt to bind to the RAS when it starts.

Default: ${VFHOME}/setup/trusted

savedir This directory contains ddm.* and p*.* files after a directory

has been saved.

Default: ${VFHOME}/save

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 41

sumtabdir This directory contains a log comprising a summary of the DSA’s
activity. The content is generated by alogproc.

Default: ${VFHOME}/sumtab

tmpdir This is the directory where a DSA stores temporary files during

replication. This directory does not need to be backed up.

Default: ${VFHOME}/tmp

ulogdir This directory contains the update log file.

Default: ${VFHOME}/logs

webdir This directory contains Access Presence configuration and data

files.

Default: ${VFHOME}/webdir

Address parameters

ViewDS processes communicate with each other using either an OSI Stack or the

ViewDS TCP/IP-based Lightweight Stack (LWS). For both, there are further choices

about the transport and network used. These choices are defined according to the

address specification used for the addressing parameters (see page 23).

The address parameters as follows.

baseport The base port for TCP/IP-domain addresses.

The value of this parameter can be referenced by other
parameters through the expression {baseport} with an

optional integer offset. For example: {baseport}+3

Default: 3000

dsaaddress The base address for the dsa process. The DSA always

listens on this address and on dsaaccesspoint if defined.

Default: vlws://localhost:{baseport}

dsacontrol The address for communication between the DSA and RAS.

No default.

dsaaccesspoint The presentation address for a DSA using OSI

communications. Recommended values for OSI over RFC

1006 are:

• osi://localhost:102 (under Unix root or Windows)

• osi://localhost:{baseport}+3 (all others)

No default.

dsaidmpaddress The presentation address for the DSA when using IDM

communications. Recommended value:
idm://localhost:{baseport}+8

No default.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

42 Chapter 3: Configuring ViewDS

dsaprivate The dsa process’s private address used by the dot threads,

and available to other local processes by explicit override. It

should be a Unix domain address for Solaris and Linux.

Defaults:

• vlws:${VFHOME}/general/x500local (Solaris or

Linux)

• vlws://localhost:{baseport}+13 (Windows)

dualocal The presentation address for Unix-based DUAs if using OSI

communications.

Default for OSI over RFC1006: osi://localhost

httpsaddress The DSA’s XLDAP address. This address is required if you

use XLDAP over TLS. No default.

ldapaddress The DSA listens on this address for native LDAP connections.
If the DSA SLDAP Address (sldapaddress) is also defined,

the two should specify different port numbers. Recommended

values:

• ldap://localhost:389 (Unix root or Windows)

• ldap://localhost:{baseport}+6 (all others)

No default.

rasaddress The address for the RAS.

Default: vlws://localhost{baseport}+18

soapaddress The HTTP address the DSA listens on for XLDAP requests

over SOAP.

Default: http://localhost:{baseport}+9

snmpcontrol The RAS communicates with the SNMP Agent on this

address. No default.

sldapaddress The DSA listens on this address for SSL LDAP connections. If
the DSA LDAP Address (ldapaddress) is also defined, the

two should specify different ports.

Recommended values:

• sldap://localhost:636 (if running as Unix root or

under Windows)

• sldap://localhost:{baseport}+7 (all others)

No default.

snmpagent The DSA listens on this address for SNMP requests. The
value should take the form host:port – for example:

snmpagent = localhost:{baseport}+19

No default.

http://localhost:%7bbaseport%7d+9

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 43

xldapaddress The address the DSA listens on for XLDAP requests over

TCP/IP. Recommended value:
xldap://localhost:{baseport}+12

No default.

Usage

The addresses are used as follows:

• The dsa process listens on dsaaccesspoint (if available) and dsaaddress.

When initiating associations to other DSAs it uses the knowledge reference to the

other DSA to determine whether to use OSI or Lightweight Stack associations.

• The sdua process (Stream DUA), dsac process (DSA Controller), pdua process

(Printing DUA) and Access Presence connect to dsaaccesspoint (if available),

otherwise dsaaddress. If connecting through OSI, a client process uses

dualocal as its OSI address.

• The dsa and dot threads communicate through dsaprivate.

The client processes (dsac, sdua, pdua) use an OSI stack if dsaaccesspoint is

defined, otherwise they use dsaaddress. This is illustrated below.

Figure 2: Addresses

The default or recommended port assignments are as follows:

Parameter Port

dsaaddress 3000

dsaaccesspoint 3003 or 102

dsaidmpaddress 3008

soapaddress 3009

xldapaddress 3012

dsaprivate 3013 (Windows) general/x500local (Unix/Solaris)

snmpagent 3019

ldapaddress 3006 or 389

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

44 Chapter 3: Configuring ViewDS

Access Presence configuration parameters

These configuration parameters are only relevant when Access Presence is

implemented. They are described in the Technical Reference Guide: User Interfaces.

Operational parameters

baseentry The Distinguished Name (DN) of the subschema administrative

point in Stream DUA notation. For example:

 baseentry = { O "Deltawing" }

If Access Presence is used, this parameter must have a value

so that Access Presence can retrieve schema information.

Access Presence also uses this parameter as the default base

entry for searches.

No default.

bounds Whether strict bounds checking on the length of X.520

attributes of string syntax is enabled (see Parsing rules for

attributeSyntax on page 66).

Note that disabling bounds checking may cause protocol errors

when results are chained through, or chained to, systems that

enforce bounds checking. Most implementations, however, do

not enforce bounds checking.

Default: off

certificatelookup Determines the way in which the DSA looks up certificates

during strong authentication (see page 112). There are two

possible values:

• subjectNameIsEntryName –the DSA expects a

certificate’s subject name to match the DN of the entry in

which it is stored.

• mapSubjectNameToEntryName – the DSA searches the

entire DIT for a certificate with a matching subject name. It

then uses the entry containing the matching certificate, in the

case of the end-entity certificate, as the authentication

identity for subsequent processing of operations on the

authenticated connection.

The second option has two advantages:

• a certificate naming policy can be used that is different to the

naming policy of the directory.

• an entry can be moved in the DIT (therefore changing its

DN) without the requirement to re-sign its certificate.

Default: subjectNameIsEntryName

certrevocation Whether certificate revocation checking is enabled during

strong authentication.

Certificate path processing is carried out by requiring every

certificate used during certificate verification to be present in the

directory. User certificates should be stored in the
userCertificate attribute of the appropriate entry and

intermediate CA certificates should be stored in the
cACertificate attribute of the appropriate entry.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 45

When certrevocation is set to on, every certificate that is

verified during the certificate path validation will have its

revocation status checked if a certificate revocation list (CRL) is

available. If a certificate is found to be revoked, then certificate

path processing will fail. The CRL of an intermediate CA should
be stored in the certificateRevocationList attribute

within the same entry used to store that authority's
cACertificate. The CRL of a trust anchor should be present

within the certificateRevocationList attribute in the root

entry.

Default: on

deitymask The Unix umask to use when the DSA creates the deity file.

This may be adjusted to allow all members of a Unix group to

have administrative privileges. It allows an HTTP server to run

under a different account and still have the Admin DUA (no

longer shipped with ViewDS) behave correctly.

Default: 0400

displog Whether a consumer DSA in a replication agreement should log

the binary DISP PDUs it receives from its supplier. Some of

these PDUs can be quite large, so this option should be used
with care. The PDUs are logged in the tmpdir directory.

Default: off

dsigcanonical

toleration

Identifies the extent to which ViewDS conforms to the Oasis

specification for canonicalization of XML digital signatures. If set

to Strict, then ViewDS validates a digital signature according to

the specification. Alternatively, if set to Tolerant, ViewDS

removes comments from an invalid signature and attempts to

re-verify it.

Default: Tolerant

dsigrequirestrong Identifies whether ViewDS requires strong authentication prior

to processing XACML requests. If set to On, then ViewDS will

only process XACML requests that have been sent by a client

whose identity has been verified using strong authentication.

Supported strong authentication mechanisms for XACML

requests include:

• An XACML request sent over SSL using SSL client

authentication

• A signed SAML XACML request.

Any XACML requests sent by a client whose identity has not

been verified by strong authentication will be rejected with an

HTTP unauthorized response.

If set to Off, then all XACML requests will be processed

normally, in conjunction with any other authorization policies

that may apply.

Default: Off

https://docs.oasis-open.org/xacml/3.0/dsig/v1.0/cs02/xacml-3.0-dsig-v1.0-cs02.html#_Toc389129990
https://docs.oasis-open.org/xacml/3.0/dsig/v1.0/cs02/xacml-3.0-dsig-v1.0-cs02.html#_Toc389129990

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

46 Chapter 3: Configuring ViewDS

dsigsignresponse Identifies whether ViewDS should sign SAML XACML

responses.

If set to Off, then ViewDS will only sign the responses of signed

requests.

If set to On, then ViewDS will sign all responses.

Default: Off

dsigx509data Identifies whether to attach the X509Certificate or the

X509SubjectName to signed responses.

Recipients of a signed response must be able to identify the

signing certificate in order to verify the signature. ViewDS can

provide clients with the signing certificate directly or provide the

subject DN of the signing certificate.

If set to 'X509Certificate', then the signing certificate will be

attached into the signed response.

If set to 'X509SubjectName', then the distinguished name of the

signing certificate will be attached into the signed response.

Default: X509Certificate

gssService The <service name> component of the Kerberos principal

name.

The Kerberos principal name for a service generally takes

the following form:

<service name>/<host name>@<realm name>

On a Unix host it is abbreviated to:

<service name>@<host name>

Default: ldap

gssName The <host name> component of the Kerberos principle name.

If this parameter is unspecified, ViewDS obtains the fully

qualified domain name of the local host.

No default

gssRealm The <realm name> component of the Kerberos principle

name.

The <realm name> is usually obtained from the operating

system. Under Windows, it can also be obtained from the

domain name of the local host.

This parameter should not normally be required. However, it

should be declared when:

• the DSA is running under Windows and authenticates into a

Unix Kerberos environment; and

• the <realm name> cannot be determined from the Unix

domain name.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 47

gssUserName The attribute that identifies the authentication identity in the

directory.

After a SASL GSS-API authentication identity has been

established, it must be mapped to an identity in the directory to

be used for authorization decisions.

ViewDS performs this mapping by:

• Searching the directory for the attribute identified by
gssUserName.

• If ViewDS finds a single matching entry, the DN of the entry

is used as the authorization identity. Otherwise, it checks the
anonymousPrivilege attribute (see page 127) in the root

entry.

• If the credentialType in the anonymousPrivilege

attribute is set to saslGSSAPI, the authorization identity is

set to anonymous with the ViewDS access-control privilege
identified in the matching anonymousPrivilege value.

Otherwise, authentication failure is reported with the error
inappropriateAuthentication.

Default: viewDSUserName

ignorebackslash Set to on for LDAP to prevent the backslash character "\" from

being treated as an escape character in strings.

Default: off

incrementsize The maximum number of DAP/LDAP updates included in each

incremental update sent by a supplier in a replication

agreement. This setting prevents the PDUs from becoming too

large to be handled in a single update transaction.

Default: 256

ldapasciihex The parameter is provided for backwards compatibility with
previous versions of ViewDS (where it is always on). It is only

used for LDAPv2 connections. If on, binary values in LDAPv2

are returned using the ASCII hex notation “{ASN}...”. If off,

values without a text encoding are returned as raw ASN.1

binary values.

Default: off

ldapv2syntax The syntax expected and returned on LDAPv2 connections. It is
set to either t61, 8859 or utf8.

Default: t61 is standard (other values may be needed to inter-

work with certain third-party clients).

pselectorhack This option is for inter-working with other X.500 products. It

prevents ViewDS from distinguishing between a presentation

selector in a presentation address being absent or having zero

length.

Default: on

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

48 Chapter 3: Configuring ViewDS

rastimeout Defines how many seconds the RAS command line will wait for
a response from the rasrv process before timing out. You can

override this setting from the RAS command line (see Remote

Administration Service on page 11).

A value of 0 declares an indefinite time limit.

Default: 10

rxeropt Controls the level of optimization used when encoding data

using RXER. It can be set to:

• off – results in well-presented RXER encoding with clear

indentation and textual representation of OIDs.

• partial – also makes the RXER well formatted, but omits

the textual OID represents.

• full – optimizes the RXER further by removing all

indentation.

Default: off

saslrealm The SASL LDAP authentication mechanisms require a realm

field. This should be an ASCII value.

Default: viewDS

saslusername The SASL LDAP authentication mechanisms permit

authentication credentials to be specified using a simple user

name instead of a DN. However, ViewDS must map the user

name onto a DN during authorization checking.

The value of this parameter identifies the attribute type to be

searched using an assertion value of the user name provided in

the authentication request. Where a unique match for this value

of this attribute is found, the matching entry’s DN will be used

for authorization checks.

The default attribute used for mapping the user name to a DN is
the viewDSuserName attribute.

schemachecking Controls the schema-checking level for the ViewDS Fast Load

utility (see page 11). The options are:

• none

• all

• ignoreUserModifiableFlag

For more information about schema checking, see 60.

If upgrading to ViewDS version 7.1, the recommended setting is
none.

Default: none

shmmax This parameter has been deprecated.

snmpapplindex The SNMP application index for the DSA. Default: 1

snmpmaxpdusize The maximum size of an SNMP PDU the DSA will send.

Default: 484

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 3: Configuring ViewDS 49

strictldap The DSA tolerates non-standard variations in the LDAP protocol
received from LDAP clients. When this parameter is on, the

DSA requires strict LDAP conformance by clients.

Default: off

truncateresult If set to off, the number of search results will match the

sizelimit. If set to on, a group of search results with the

same ranking will be discarded and the number of results
returned will be less than the sizelimit (see page 22).

Default: off

zerolengthstring If on, this field removes the requirement that DirectoryString

values have a length greater than zero. This allows zero-length

DirectoryString values to be added to the directory.

Default: off

 51

Chapter 4

 Defining schema

This chapter describes schema concepts and the operational attributes that define

schema. This chapter describes how to modify the operational attributes using the

Stream Directory User Agent (Stream DUA). However, they can also be modified

through the ViewDS Management Agent.

This chapter includes:

• Concepts

• Schema checking

• Operational attributes

• Other operational attributes

Concepts

This section provides an overview of different components of schema.

Subschema area, administrative point and subentry

A subschema area is a subtree in a Directory Information Tree (DIT) where a specific

schema applies. The entry at the top of the subtree is called the subschema

administrative point. It holds a special operational attribute, administrativeRole,

which has the value subschemaAdminSpecificArea.

NOTE: The terms subschema and schema are synonyms.

A schema is defined by operational attributes in two subentries below the

administrative point:

• schema configuration subentry

• subschema subentry

The schema configuration subentry defines indexes and attribute-type extensions; and

the subschema subentry defines all other aspects of a schema (including word lists –

synonyms, noise words and truncated words). Neither subentry is usually displayed in

the DIT. Figure 3 on the next page shows a subschema administrative point at the top

of a subschema area, and the two subentries.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

52 Chapter 4: Defining schema

Figure 3: Subschema administrative point and area

It is worth noting that the following are standard X.500 objects: the

subschemaAdminSpecificArea value of administrativeRole, and the

subschema subentry. While the following are ViewDS-specific: the

schemaConfigurationArea value of administrativeRole, and the schema

configuration subentry.

Built-in and predefined schema

The terms built-in schema and predefined schema are both used in this guide. Built-in

schema refers to the schema compiled into the ViewDS libraries; and predefined

schema refers to schema definitions in text files provided with ViewDS. Predefined

schema can be imported using the ViewDS Management Agent.

Schema operational attributes

A schema is set up by creating a subschema administrative point, and then defining

the following schema operational attributes in the subschema subentry:

• attributeTypes

• objectClasses

• matchingRules

• matchingRuleUse

• nameForms

• dITStructureRules

• dITContentRules

• definitions

These operational attributes can be modified through the Stream DUA or ViewDS

Management Agent and read by other DUAs (such as, the ViewDS Access Presence).

The operational attributes are introduced below and then described in detail later in

this chapter (see Operational attributes on page 62).

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 53

Object identifiers

An object identifier (or OID) is a sequence of integers that identifies an element of

schema – such as an object class, attribute type or matching rule.

An OID describes a tree, each node in the tree represents an object and a naming

authority responsible for allocating the next level of the tree. The object-identifier tree

is distinct from the DIT. The object-identifier tree identifies such things like attributes

and object classes; and the DIT identifies real-world entities such as countries,

organizations and people.

Example object identifier

The OID that represents the attribute type streetAddress is {2 5 4 9}. It is

constructed as follows:

• By international agreement, the object identifier {2} has been allocated to joint

ISO-ITU administration.

• This administration has allocated the arc 5 to directory, which gives the OID {2 5},

and has given administration of this OID to the X.500 committee.

• The X.500 committee has allocated the arc 4 to attributes, which gives the OID

{2 5 4}.

• The committee has assigned the arc 9 to the attribute streetAddress, which

gives the OID {2 5 4 9}.

Object identifier prefixes

Typically, the object identifiers used in ViewDS have one of the following six prefixes,

plus any other prefixes introduced by the ViewDS system administrator.

Prefix Definition

ds 2 5

mhs 2 6

vf 1 3 32 0 1

Ads 1 2 36 79672281 1

Xed 1 3 6 1 4 1 21472

Vds 1 3 6 1 4 1 21473 5

Creating object identifiers

To be allocated an object identifier, apply to one of the international standards bodies

(ITU or ISO) or to your national standards body (for example, Standards Australia).

The allocated object identifier can then be used as the root for new object identifiers

when you create new schema elements.

Every Australian organization has a default object identifier, which includes their

Australian Business Number (ABN):

{1 2 36 abn}

Where abn is the ABN.

Alternatively, your ViewDS vendor can assign object identifiers from its own arc if you

do not have (or wish to use) your own. Contact your ViewDS vendor for further details.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

54 Chapter 4: Defining schema

Object identifier organization

The following table shows the recommended organization for object identifiers. It is

parallel to the organization used by X.500, which involves using the arc below your

organization’s arc to represent the category-of-information object (see X.501 Annex A

for a full list).

Category Arc

attribute type 4

object class 6

DSA operational attribute * 12

matching rule * 13

knowledge matching rule * 14

name form 15

operational attribute * 18

schema operational attribute * 21

access control attribute * 24

NOTE: The operational attributes and matching rules marked with an asterisk * are shown for

information only. Operational attributes and matching rules are not user-definable.

Managing object identifier arcs

ViewDS allows you to declare object identifier arcs for user-defined matching rules,

attributes, object classes and name forms. The arcs are stored in an operational

attribute in a DSA subschema subentry, which can be accessed through the Stream

DUA or ViewDS Management Agent.

The operational attribute is as follows:

viewDSSubschemaObjectIdentifiers ATTRIBUTE ::= {

 WITH SYNTAX ObjectIdentifierArcs

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID id-viewDS-soa-objectIdentifiers

}

ObjectIdentifierArcs ::= SEQUENCE {

 matchingRules [0] OBJECT IDENTIFIER OPTIONAL,

 attributeTypes [1] OBJECT IDENTIFIER OPTIONAL,

 objectClasses [2] OBJECT IDENTIFIER OPTIONAL,

 nameForms [3] OBJECT IDENTIFIER OPTIONAL

}

For information about declaring arcs through ViewDS Management Agent, see the

help topic View or modify OID arcs.

After arcs have been declared, the ViewDS Management Agent will present the next

available identifier whenever a user creates a new schema object.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 55

Attribute syntaxes

An attribute syntax is the data type used to represent values of an attribute. Every

attribute type has a single attribute syntax, which is assigned to it in the attribute

definition. Attribute syntaxes are also the basic building blocks from which a new

attribute type is built.

ViewDS supports a fixed set of built-in attribute syntaxes, referenced by their ASN.1

type name. ViewDS supports:

• all ASN.1 built-in types

• all user and operational attribute syntaxes defined in X.500 (1993)

• four attribute syntaxes from X.400 (1994) which are required to support X.400

directory attributes

• 11 QUIPU syntaxes

• a number of ViewDS-specific attribute syntaxes

ViewDS also allows references to the built-in types of XML schema, and references to

types in imported XML schema documents.

Examples of built-in attribute syntaxes are: BOOLEAN, INTEGER, DirectoryString,

ORAddress, PresentationAddress, Privilege.

Matching rules

The second building block in the definition of an attribute type is the set of matching

rules used by the Directory System Agent (DSA) to match a value of the attribute.

Matching rules are invoked automatically whenever an equality, ordering or substring

match is attempted on an attribute value. They can also be invoked explicitly in a

search filter using a matching rule assertion.

In ViewDS, a matching rule is referenced by its name or by its object identifier. Every

rule has a name and an object identifier in its definition.

ViewDS supports a fixed set of matching rules – those defined in X.500 (1993) and

LDAP, plus a number of X.400 and ViewDS-specific matching rules. Appendix B on

page 225 lists the set of supported matching rules along with their names, object

identifiers and references to definitions.

Assertion syntax

Each matching rule has an assertion syntax. It defines the syntax of the information

provided in the search-filter item when searching with the matching rule. The assertion

syntax is a property of a matching rule similar to the syntax of an attribute.

Examples

An example of why matching rules have their own assertion syntaxes is the substrings

match. The assertion syntax needs to be sufficiently complex to express the sequence

of substrings required to match against strings and their order. So, the

SubstringAssertion syntax of a substrings matching rule is as follows:

SubstringAssertion ::= SEQUENCE OF CHOICE {

 initial [0] UnboundedDirectoryString,

 any [1] UnboundedDirectoryString,

 final [2] UnboundedDirectoryString,

 control Attribute

 - at most one initial and one final component}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

56 Chapter 4: Defining schema

Another example is the matching rule generalizedTimeMatch, which has the

following properties:

• object identifier {2 5 13 27}

• assertion syntax of GeneralizedTime (an ASN.1 built-in type)

• returns TRUE if the attribute value it is applied to represents the same time as the

presented value

Using matching rules

To be available in a subschema area, a matching rule must be declared in the

operational attribute matchingRules in the subschema subentry.

In general, a matching rule’s assertion syntax does not allow a DUA to determine

whether the matching rule can be used with a particular attribute. For this reason, the

subschema subentry may include the operational attribute matchingRuleUse to

define which attribute types use which matching rules. This is only of benefit to DUAs

– the presence or absence of a matchingRuleUse attribute has no effect on the

behaviour of the DSA.

Attributes

A directory attribute is a basic item of information about an entry, consisting of a type

(or kind), a label and one or more values of that type. There are two kinds of directory

attributes:

• user attributes, which hold information of interest to ViewDS users;

• operational attributes, which hold information required for the operation of the

DSA or DUA.

The user and operational attributes in ViewDS comprise:

• standard attributes defined in the X.500 Recommendations and LDAP RFCs;

• ViewDS-specific attributes; and

• user-defined attributes.

ViewDS has built-in knowledge of all X.400 (1994) and X.500 (1993) attributes. The

built-in attribute types are listed in Appendix B.

Using attributes

To use a particular user attribute in a schema requires the following:

• The attribute type must be declared in the operational attribute attributeTypes

in the subschema subentry.

• If the attribute requires special treatment by the DSA (such as indexes, approximate

matching, DN tracking) then an appropriate value must be declared in

entryIndexing or attributeTypeExtensions in the schema configuration

subentry.

• If Access Presence needs to display the attribute, then appropriate values must be

declared for the operational attribute attributePresentation in the subschema

subentry.

Matching rules

Optionally, an attribute definition can declare which matching rules should be used

when performing an equality, ordering or substring match on the attribute values.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 57

Equality matching rule

The DSA uses an equality matching rule when:

• adding a value to a multi-valued attribute to determine whether the value already

exists

• deleting a value from a multi-valued attribute to identify the value to be deleted

• comparing values using the compare operation

If no equality matching rule is defined (or available by default) the DSA cannot perform

the ‘add values’ or ‘remove values’ functions of the operations Modify Entry or

Compare on the attribute.

Ordering matching rule

An attribute’s ordering matching rule defines its default ordering semantics. This

default ordering is used when processing a greaterOrEqual or lessOrEqual item in a

search filter.

If no ordering rule is specified for a particular kind of match, the DSA will be unable to

perform matches of that kind.

Substrings matching rule

Similarly, an attribute’s substrings matching rule defines the default substring

matching semantics, which is used when processing a substrings item in a search

filter.

Object classes

An object class describes the kind of object an entry represents – for example, a

person, an organizational unit or a distribution list.

An object class can be derived from other object classes using multiple inheritance.

The object class of each entry is stored within the entry itself in the multi-valued

objectClass attribute. Each value is an object identifier – that of the object class or

one of its superclasses in the inheritance chain. All superclasses must appear in the

objectClass attribute, with the exception of top, which is the object class from

which all others are ultimately derived.

NOTE: The objectClass attribute is classified as a user attribute in X.500 for historical

reasons, even though in most respects it acts as an operational attribute.

Structural and auxiliary object classes

An object class is either abstract, structural or auxiliary:

• An abstract object class can only be used as a superclass of another object class.

An example of an abstract object class is top.

• A structural object class typically defines the kind of entry – for example,

organization, person, or device.

• An auxiliary object class constitutes optional, temporary characteristics – for

example, message-handling user, or strong-security user.

An entry has exactly one structural object class, but may have any number of auxiliary

object classes associated with it.

The value of the objectClass attribute at the bottom of the structural-object-class

chain is called the structural object class of the entry. It determines the name form and

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

58 Chapter 4: Defining schema

set of possible structure rules for the entry, and has a major role in determining the

attribute types the entry can hold. The structural object class can be read from the

entry as the value of the single-valued operational attribute

structuralObjectClass. This value is generated by the DSA when the entry is

created and is not user-modifiable.

Object classes are added to a schema through the operational attribute

objectClasses in the subschema subentry. If built-in object classes are used in a

schema, they must also be declared in this operational attribute.

NOTE: If Access Presence needs to display entries of a particular object class, they must be

declared in the subschema subentry’s objectClassPresentation operational

attribute (see the Technical Reference Guide: User Interfaces).

Aliases

An alias is an entry whose aliasedEntryName attribute contains the Distinguished

Name of another entry, and whose object class is a subclass of alias. The DSA

normally resolves aliases automatically.

Although the alias structural object class makes the aliasedEntryName attribute

mandatory, this is insufficient for naming an alias entry. To permit the various naming

attributes to be present requires either subclasses of the alias class to be defined or

an all-encompassing content rule to be defined.

Name forms

A name form defines which attributes can appear in the Relative Distinguished Name

(RDN) of an entry.

For each structural object class, there is one or more name form. Each includes a list

of the mandatory and optional attributes that can appear in the RDN of an entry of a

particular structural object class.

The name forms for a particular structural object class must be such that any

particular combination of naming attributes is permitted by only one name form. This is

not a requirement of X.500, but is imposed by ViewDS to avoid ambiguity about which

name form should apply.

Using name forms

A name form is identified by its object identifier.

Name forms are added to a schema through the operational attribute nameForms in

the subschema subentry. If the built-in name forms are used in the schema, they must

be declared explicitly, just as for user-defined name forms.

NOTE: If the nameForms and dITStructureRules operational attributes are both absent

from the subschema subentry, the DSA will not restrict which attributes can appear in

an entry’s RDN.

Structure rules

A structure rule defines which class of entry can be superior or subordinate to another

class of entry in the DIT.

Each entry has a governing structure rule, which the DSA selects from one of the

structure rules assigned to the entry’s structural object class.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 59

The governing structure rule of an entry is determined by three factors:

• the structural object class of the entry;

• the name form of the entry, which is determined by the entry’s structural object

class and the attributes used to form its RDN; and

• the governing structure rule of the entry’s immediate superior in the DIT.

The governing structure rule of an entry is calculated by the DSA when the entry is

added or moved. It can be read from the entry as the value of the single-valued

operational attribute governingStructureRule.

For each name form, the schema lists one or more permitted structure rules. Each

lists the governing structure rules of permitted superiors in the DIT. These constrain

the ability to add an arbitrary entry below some other entry. If no governing structure

rule can be calculated for a proposed new entry, it cannot be added.

The subschema administrative point entry does not depend on the governing structure

rule of its superior entry. Its structure rule must have an empty list of superior

governing structure rules. If no such structure rule exists, the subschema

administrative point entry is permitted to exist, but it has no governing structure rule

and no subordinates can be added to it (although subentries may be).

Using structure rules

A structure rule is identified by an integer, which is arbitrary but must be unique within

the subschema area. The structure rules for a particular name form must be such that

any particular superior governing structure rule appears in at most one structure rule.

Structure rules are made known to the schema through the operational attribute

dITStructureRules in the subschema entry. There are no built-in structure rules.

If the nameForms and dITStructureRules operational attributes are both absent

from the subschema subentry, then the DSA will not restrict which class of entry can

be subordinate to another class of entry in the DIT.

Content rules

Each object class (structural or auxiliary) defines a set of mandatory and optional

attributes for its entries – mandatory attributes must have values, and optional

attributes may or may not have values. Other attributes are not allowed in an entry.

To augment this, a content rule can be defined for a structural object class. A content

rule can specify additional mandatory and optional attributes, and can disallow

otherwise permitted optional attributes.

A content rule can also associate a set of auxiliary object classes with a structural

object class. The specified auxiliary object classes can then be added to an entry of

the structural object class.

Using content rules

Content rules are identified by the structural object class they augment. A separate

identifier is not needed.

Content rules are made available through the operational attribute

dITContentRules in the subschema subentry. There are no built-in content rules.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

60 Chapter 4: Defining schema

Schema checking

The Stream DUA and ViewDS Fast Load (vfload) tools allow you to load data from a

file into a database. When either tool is used, the DSA checks the data against the

relevant schema.

This subsection describes the following aspects of schema checking:

• Loading data files

• Setting levels of schema checking

• Checks performed by the DSA

Loading data files

When loading data from a ViewDS dump file, the DSA obtains a level of schema

checking. The level can be declared in the dump file:

• individually for each operation in the file

• globally for all operations in the file that do not have an individual declaration

For an operation without an individual declaration – in a file without a global

declaration – the DSA applies the level set for the tool being used to load the

database. (This tool is either Stream DUA or ViewDS Fast Load.)

When loading LDIF content records, Stream DUA and ViewDS Fast Load

automatically set the level of schema checking to ignoreUserModifiableFlag.

For LDAP and XLDAP, a schemaCheckingRequest control sets the level of schema

checking.

Setting levels of schema checking

The levels for schema checking are ignoreUserModifiableFlag, all or none.

The level can be set for Stream DUA and ViewDS Fast Load:

Stream DUA The schema-checking behaviour for Stream DUA is set through
the set options command (see page 196). The default is all.

ViewDS Fast Load

(vfload)

The default schema-checking behaviour for ViewDS Fast Load is
set by the schemachecking parameter in the ViewDS

configuration file (see page 48). The default is none.

The schemachecking configuration file option did not exist

before 6.0e8 but the schema-checking behaviour did. It was,
however, tied to the manageDSAIT service control option.

When ViewDS version 7.1 is installed, the standard configuration
file is installed with the schemachecking parameter set to all.

Upgrading from View500 version 6 involves copy the existing

configuration file to the ViewDS version 7.1 directory structure. In
this case, the schemachecking parameter defaults to none.

The schemachecking parameter can be overridden on a per-

operation basis using the schemaChecking service control

option in the common arguments.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 61

ignoreUserModifiableFlag

Reloading from database-dump files restores the content of a directory to its state

when the dump command was executed. This includes setting values of operational

attributes (such as modifyTimestamp) that cannot normally be modified by user

operations. The ignoreUserModifiableFlag schema-checking mode allows

these operational attributes to be loaded, but all other schema violations in the dump

files to generate errors.

To illustrate, consider the following scenario:

1. A schema is modified. (This may introduce inconsistencies between the existing

data and the schema.)

2. The database is dumped.

3. The schemaChecking commands are removed from the dump file, and the level

of schema checking for the ViewDS Fast Load tool is set to

ignoreUserModifiableFlag.

4. The database is emptied and the dump file is loaded using ViewDS Fast Load. At

this stage, the DSA reports an error whenever it finds an inconsistency between

the data and the schema. However, the schema-checking level

ignoreUserModifiableFlag ensures that no error is reported when the value

of an operational attribute is loaded into the database.

Checks performed by the DSA

The DSA performs the following checks:

• Entry creation

• Entry modification

• Schema inconsistency

Entry creation

When an entry is created it belongs in the subschema area of its superior, unless it is

created as an administrative point.

When an entry is created, the DSA checks the following:

• Entries immediately below the root must be created as autonomous administrative

point entries.

• Every entry must be created with an objectClass attribute and contains exactly

one structural object class chain and zero or more auxiliary object class chains. If

an object class value is present then an object class value for its superclass(es)

must also be present. The DSA determines the structural object class of the entry

and creates the single-valued operational attribute structuralObjectClass.

• The structural object class of the entry and the attribute types used in its RDN

combine to identify one of the DSA’s supported name forms (the ‘actual’ name form

of the entry). Restrictions on the definition of name forms ensure that no more than

one name form can be identified. If none are identified, the entry cannot be added

to the directory.

• The ‘actual’ name form and the governing structure rule of the entry’s intended

immediate superior combine to identify one of the DSA’s supported structure rules.

This is the entry’s own governing structure rule. Restrictions on the definition of

structure rules ensure that no more than one structure rule can be identified. If none

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

62 Chapter 4: Defining schema

are identified, the entry cannot be added to the directory. (The DSA stores the

entry’s governing structure rule in the single-valued operational attribute

governingStructureRule.)

• If there is a content rule for the entry’s structural object class, the DSA checks that

any auxiliary object classes declared in the objectClass attribute are permitted

by the content rule. Otherwise, the entry cannot be added to the directory.

• The DSA performs an entry content check. The DSA checks that the entry’s content

conforms to the mandatory and optional attributes defined by its structural and

auxiliary object classes (and also possibly a content rule). If it does not, the entry

cannot be added to the directory.

Entry modification

When an entry is modified, renamed or moved, the DSA performs the following

checks:

• If attribute values are modified, the DSA performs an entry content check (see the

last bullet in the previous subsection). It rejects the modification if the check fails.

• If the object class attribute is modified, the DSA checks that the structural object

class is unchanged (that is, that only auxiliary object classes are modified). If not, it

rejects the modification.

• If the entry is renamed or moved, the DSA determines a new ‘actual’ name form

and governing structure rule, and performs an entry content check. If no governing

structure rule can be found – that is, the renamed or moved entry is not acceptable

as a subordinate of its new superior – or the entry content check fails and the DSA

rejects the operation.

Schema inconsistency

As renaming or moving an entry may result in its governing structure rule changing, it

is possible for subordinates of an entry to become inconsistent with their schema. The

DSA permits this, in accordance with X.500. The directory continues to operate

normally and can be dumped and reloaded successfully. However, there are

considerations:

• When reloading, the schema-checking level should be set appropriately (see

Schema checking on page 60).

• DUAs and other DSAs that interwork with the DSA must be prepared to handle

schema inconsistencies.

Schema may also become inconsistent as a result of changes to the schema

publication attributes. The data in the directory may no longer conform to the modified

schema. Schema inconsistencies should be rectified manually (ViewDS does not

provide support for this).

Operational attributes

If the same schema object is present in multiple subschema areas (or it also appears

as a built-in definition) the definitions must be consistent. The exceptions are the

name, description and obsolete fields.

The name field contains a set of symbolic names for a schema definition. Each name

must begin with a letter and may contain any number of letters (case is insignificant),

digits and hyphens.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 63

The names are used by Stream DUA when listing the contents of an entry. They are

used in place of the schema definition’s object identifier. If multiple names are given,

Stream DUA uses the first name when displaying (outputting) entry information, but

recognizes all names when loading entry information.

The DSA also uses the first name as the schema definition’s descriptor in LDAP

responses. That is, unless one of the names is prefixed with ‘ldap:’ – in which case,

that name will be used in LDAP. The DSA recognizes all the names, both the prefixed

ones and the ones without a prefix, in LDAP requests.

In the following descriptions of operational attributes, a ‘previously defined’ symbolic

name refers to either:

• a name specified in a schema object that already exists in the schema; or

• a name being added in the same operation as the current one.

administrativeRole

This operational attribute allows you to create a subschema administrative point at an

entry. To create a subschema administrative point, administrativeRole must

have the value subschemaAdminSpecificArea.

Schema attributes that are not in a subschema subentry subordinate to a subschema

administrative point are not used by ViewDS to enforce schema rules (though such

attributes are checked for consistency with other schema definitions).

The ASN.1 definition is:

administrativeRole ATTRIBUTE ::= {

 WITH SYNTAX OBJECT IDENTIFIER

 EQUALITY MATCHING RULE objectIdentifierMatch

 USAGE directoryOperation

 ID {ds 18 5} }

attributeTypes

This operational attribute is added to a subschema subentry and defines the user

attributes in the subschema area. It is multi-valued, and each value defines one

attribute type. All built-in and user-defined attribute types are defined in this way.

The ASN.1 definition is:

attributeTypes ATTRIBUTE ::= {

 WITH SYNTAX AttributeTypeDescription

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {ds 21 5} }

AttributeTypeDescription ::= SEQUENCE {

 identifier ATTRIBUTE.&id,

 name SET OF DirectoryString {ub-schema} OPTIONAL,

 description DirectoryString {ub-schema} OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE,

 information [0] AttributeTypeInformation }

AttributeTypeInformation ::= SEQUENCE {

 derivation [0] ATTRIBUTE.&id OPTIONAL,

 equalityMatch [1] MATCHING-RULE.&id OPTIONAL,

 orderingMatch [2] MATCHING-RULE.&id OPTIONAL,

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

64 Chapter 4: Defining schema

 substringsMatch [3] MATCHING-RULE.&id OPTIONAL,

 attributeSyntax [4] DirectoryString {ub-schema} OPTIONAL,

 multi-valued [5] BOOLEAN DEFAULT TRUE,

 collective [6] BOOLEAN DEFAULT FALSE,

 userModifiable [7] BOOLEAN DEFAULT TRUE,

 application AttributeUsage DEFAULT

 userApplications }

AttributeUsage ::= ENUMERATED {

 userApplications (0),

 directoryOperation (1),

 distributedOperation(2),

 dSAOperation (3) }

The components are described below.

AttributeTypeDescription

identifier The object identifier of the attribute. It is either a built-in

symbolic name or a numeric object identifier, for example,
commonName or {1 3 32 0 2 0 4 42}.

name The set of symbolic names to be created for the attribute.

description A natural language description of the attribute. ViewDS does

not use this component, but it can be used when publishing

schema for third-party DUAs.

obsolete A flag that indicates that the attribute is obsolete. Existing

entries may contain obsolete attributes. However, an obsolete

attribute cannot be added to an existing entry or new entry.

information This component comprises the subcomponents described

below.

AttributeTypeInformation

derivation The attribute type (if any) of which the attribute is a subtype.

It is only declared if the attribute is a subtype of some other

attribute. In this case, by default, the attribute acquires the
equalityMatch, orderingMatch, substringsMatch and

attributeSyntax of the supertype, although these can be

declared explicitly.

equalityMatch

orderingMatch

substringsMatch

The equality, ordering, and substrings matching rules for the

attribute. Each is either the built-in symbolic name or the object

identifier of one of the built-in matching rules (see Appendix B).
If a derivation is declared, these values are only required if

they differ from those of the super-type.

If an attribute is defined without an equality matching rule, the

DSA uses special rules for handling it. An attempt to add or

remove values of such an attribute return an

inappropriateMatching attribute error (adding or removing

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 65

the whole attribute is permitted). Compare and search

operations always evaluate attribute value assertions containing

the attribute to false.

Built-in attribute types with no equality matching rule can be
redefined to use an equality matching rule applicable to the

attribute’s syntax. In this case, an attribute’s values can be

compared, added or removed.

A redefinition of the built-in descriptions is allowed if all the
instances of the AttributeTypeDescription for the

attribute, whatever subentries they appear in, define the same
equality matching rule. (The AttributeTypeDescriptions

are allowed to differ from the built-in description in this one way

but they cannot differ from one another.)

attributeSyntax The attribute syntax of the attribute. This is a string equal to

either the ASN.1 type name of the syntax, normally chosen from

the set of supported attribute syntaxes in Appendix B, or the

text of an ASN.X type definition (that is, an ASN.X <type>

element) as described in RFC 4912.

ViewDS only supports the ASN.X notation for a type reference
(a <type> element with a ref XML attribute). Additionally, only

references to built-in X.500 ASN.1 types and XML Schema
types imported through the definitions attribute (see

page 78) are supported.

If a derivation is given, an attributeSyntax need only be

given if it differs from that of the supertype (in which case it

must nonetheless be a compatible ASN.1 subtype or restriction-

derived XML Schema type).

If the attribute syntax is the string ANY or a string not described

in Appendix B, the DSA uses special rules for handling the

attribute. Values of the attribute are stored and returned as is;

there is no attempt to decode the values and no constraint

checking is performed. Also, any attempt to match values of the

attribute will evaluate to undefined.

For information about declaring constraints for an attribute

syntax, see Parsing rules for attributeSyntax on page 66.

multi-valued If the attribute can be multi-valued, TRUE; otherwise, FALSE.

collective If the attribute is collective, TRUE; otherwise, FALSE.

userModifiable Specifies whether the attribute can be modified by a user. It

must be set to TRUE (the default) for user-defined attributes;

and is usually FALSE for operational attributes.

The flag is enforced by the DSA’s schema-checking behaviour,

which can be controlled through the schema-checking options

for each operation. When schema-checking is set to

ignoreUserModifiableFlag, the DSA enforces the schema

checking requirements unless userModifiable is TRUE.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

66 Chapter 4: Defining schema

application Specifies whether the attribute is a user or operational attribute

(and the kind of operational attribute).

When creating user-defined attributes, this component should

always be omitted (in which case it will default to

userApplications) because it is not meaningful to create a user-

defined operational attribute.

Parsing rules for attributeSyntax

The DSA has a set rules for parsing the attributeSyntax field. When the provided

string in the attributeSyntax field conforms to these parsing rules, the DSA will

recognise the syntax and handle it more effectively. When the string in the

attributeSyntax field cannot be parsed by these rules, it is treated as ANY

(described above).

There are implications of recognising the syntax of an enumerated INTEGER syntax

or ENUMERATED syntax. The enumeration values can be used by the system in

place of the numeric values they represent when displaying and parsing values of

these syntaxes.

Additionally, there are implications of recognising the syntax of constrained string

syntax. When users add or modify attributes with this syntax, a DUA (such as Access

Presence) may be able to present a list of candidate values instead of a free-text input

field.

For example, the attributeSyntax component allows:

• integer types to have named number lists, with the names appearing in the LDAP-

specific encoding. For example: INTEGER {xf (0), caas (1), other (2)}

• enumerated types to have names appear in the LDAP-specific encoding.

• value constraints on string, integer and enumerated types. For example:

INTEGER (0..5 | 9..MAX)

IA5String ("captain" | "major" | "colonel")

• size constraints to be declared for string types. For example:

PrintableString (SIZE (3..8))

PrintableString (SIZE (1..MAX))

OCTET STRING (SIZE (0..5 | 9..MAX))

• a DirectoryString to have an upper bound. For example:

DirectoryString {256} or DirectoryString {ub-common-name}

Note that MAX is an invalid value for the parameter of a DirectoryString, (that

is, DirectoryString {MAX} is invalid syntax)

Several predefined upper bounds (for example, ub-common-name) are recognized as

the parameter to a DirectoryString or as the upper bound in a range. For example,

(1..ub-serial-number).

They are, however, treated as equivalent to MAX if the bounds parameter is absent or

set to off (see page 44). If bounds is set to on then they have their suggested value

according to the UpperBounds module in the ASN.1 sources. An explicit integer value

for an upper bound will always be enforced.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 67

The ASN.1 definition of attributeSyntax is:

attributeSyntax

 Type ::= IntegerType | EnumeratedType | ConstrainedType

 | ParameterizedType

 ActualParameter ::= number | DefinedValue

 ConstrainedType ::= ParentType Constraint

Type

IntegerType ::= "INTEGER" | "INTEGER" "{" NamedNumberList

"}"

NamedNumberList ::= NamedNumber | NamedNumberList "," NamedNumber

NamedNumber ::= identifier "(" SignedNumber ")"

EnumeratedType ::= "ENUMERATED" "{" Enumeration "}"

Enumeration ::= Enumeration | EnumerationItem "," Enumeration

EnumerationItem ::= identifier | NamedNumber

ParameterizedType ::= "DirectoryString" "{" ActualParameter "}" |

"NillableDirectoryString" "{" ActualParameter "}"

ActualParameter

ActualParameter ::= number | DefinedValue

DefinedValue ::=

"ub-common-name" |

"ub-name" |

"ub-match" |

"ub-knowledge-information" |

"ub-pseudonym" |

"ub-locality-name" |

"ub-state-name" |

"ub-street-address" |

"ub-organization-name" |

"ub-organizational-unit-name" |

"ub-title" |

"ub-description" |

"ub-business-category" |

"ub-postal-string" |

"ub-postal-code" |

"ub-post-office-box" |

ub-physical-office-name" |

"ub-directory-string-first-component-match" |

"ub-localeContextSyntax" |

"ub-content" |

"ub-tag" |

"ub-domainLocalID" |

"ub-search" |

"ub-answerback" |

"ub-country-code" |

"ub-destination-indicator" |

"ub-international-isdn-number" |

"ub-postal-line" |

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

68 Chapter 4: Defining schema

"ub-privacy-mark-length" |

"ub-serial-number" |

"ub-surname" |

"ub-telephone-number" |

"ub-teletex-terminal-id" |

"ub-telex-number" |

"ub-user-password" |

"ub-x121-address" |

"ub-schema"

ConstrainedType

ConstrainedType ::= ParentType Constraint

ParentType ::=

 IntegerType |

 EnumeratedType |

 "OCTET" "STRING" |

 "NumericString" |

 "PrintableString" |

 "VisibleString" |

 "IA5String" |

 "TeletexString" |

 "VideotexString" |

 "GraphicString" |

 "GeneralString" |

 "ObjectDescriptor" |

 "BMPString" |

 "UniversalString" |

 "UTF8String"

Constraint ::= "(" ElementSetSpec ")"

ElementSetSpec ::= Elements | Elements "|" ElementSetSpec

Elements ::= SubtypeElements | "(" ElementSetSpec ")"

SubtypeElements ::= Value | ValueRange | SizeConstraint

Value ::= SignedNumber | EnumeratedValue | CharacterStringValue

ValueRange ::= LowerEndValue ".." UpperEndValue

LowerEndValue ::= Value | "MIN"

UpperEndValue ::= Value | "MAX" | DefinedValue

SizeConstraint ::= SIZE Constraint

SignedNumber ::= number | "-" number

EnumeratedValue ::= identifier

CharacterStringValue ::= cstring

Examples

The following Stream DUA script reads all values of the attributeTypes attribute in

the demonstration directory, Deltawing. Because schema attributes are available

throughout a subschema area, the attributes can be read from the Deltawing entry.

read {

 organizationName "Deltawing"

}

return { attributeTypes };

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 69

The following script adds a user-defined attribute supervisor with object identifier

{1 3 32 0 2 0 4 42} and syntax DirectoryString. Schema attributes can

only be modified at the subentry within which they are held, so the modify operation

must be directed to the subschema subentry:

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

 add values attributeTypes {

 identifier {1 3 32 0 2 0 4 42},

 name { "supervisor", "foreman" },

 information {

 derivation name,

 attributeSyntax "DirectoryString{ub-name}"

 }

 }

};

NOTE: There is no need to supply an attributeSyntax in this case as the syntax is

implied by the derivation. It is shown for illustrative purposes only.

objectClasses

This operational attribute defines the object classes in the subschema area. It is a

multi-valued attribute, each value defining one object class. Both built-in and user-

defined object classes must be defined in this way. The attribute is added to the

subschema subentry.

The ASN.1 definition is:

objectClasses ATTRIBUTE ::= {

 WITH SYNTAX ObjectClassDescription

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {ds 21 6} }

ObjectClassDescription ::= SEQUENCE {

 identifier OBJECT-CLASS.&id,

 name SET OF DirectoryString { ub-schema } OPTIONAL,

 description DirectoryString { ub-schema } OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE,

 information [0] ObjectClassInformation }

ObjectClassInformation ::= SEQUENCE {

 subclassOf SET OF OBJECT-CLASS.&id OPTIONAL,

 kind ObjectClassKind DEFAULT structural,

 mandatories [3] SET OF ATTRIBUTE.&id OPTIONAL,

 optionals [4] SET OF ATTRIBUTE.&id OPTIONAL }

The attribute’s components are described below.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

70 Chapter 4: Defining schema

ObjectClassDescription

identifier The object identifier of the object class. It is either a built-in

symbolic name or a numeric object identifier, for example,
organization or {1 3 32 0 2 0 6 27}.

name The set of symbolic names to be created for the object class.

description A natural language description of the object class. ViewDS

does not use this component, but it can be used when

publishing schema for third-party DUAs.

obsolete A flag that indicates that the object class is obsolete. Existing

entries can continue to use an obsolete object class. However,

an obsolete object class cannot be included in a new entry’s
objectClass attribute.

information This component comprises the subcomponents described

below.

ObjectClassInformation

subClassOf The set of superclasses for the object class. Each is either a

built-in symbolic name, including top or alias, a symbolic name
defined in the name field of a previously defined

objectClasses value, or a numeric object identifier.

kind The object class kind, which is either abstract, structural,

or auxiliary. If omitted, the default is structural. (There is

never a need to define an abstract object class.)

mandatories A list of mandatory attributes for the object class. Optionally, the

list can include the inherited mandatory attributes. Each

attribute is specified either as a built-in symbolic name, a
symbolic name defined in the name field of a previously defined

attributeTypes value, or a numeric object identifier.

optionals A list of the optional attributes for the object class.

Examples

The following Stream DUA script reads all values of the objectClasses attribute:

read {

 organizationName “Deltawing”

}

return { objectClasses };

The following script defines the built-in object class person:

modify {

 organizationName “Deltawing”

 / commonName "Subschema"

}

with changes {

 add values objectClasses {

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 71

 identifier { 2 5 6 6 },

 name { "person" },

 information {

 subclassOf { top },

 mandatories { commonName, surname },

 optionals {

 description,

 telephoneNumber,

 userPassword,

 seeAlso

 }

 }

};

matchingRules

This operational attribute specifies the matching rules in the subschema area. It is a

multi-valued attribute, each value specifying one matching rule. Only the built-in

matching rules may be declared; built-in matching rules not declared in this attribute

cannot be used in the subschema area. The attribute is added to the subschema

subentry.

The ASN.1 definition is:

matchingRules ATTRIBUTE ::= {

 WITH SYNTAX MatchingRuleDescription

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {ds 21 4} }

MatchingRuleDescription ::= SEQUENCE {

 identifier MATCHING-RULE.&id,

 name SET OF DirectoryString { ub-schema } OPTIONAL,

 description DirectoryString { ub-schema } OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE,

 information [0] DirectoryString { ub-schema } OPTIONAL }

 -- describes the ASN.1 assertion syntax

MatchingRuleDescription

identifier The object identifier of the matching rule (preferably its built-in

name).

name The set of symbolic names to be created for the matching rule.

description A natural language description of the matching rule. ViewDS

does not use this component, but it can be used when

publishing schema for third-party DUAs.

obsolete A flag that indicates that the matching rule is obsolete.

information The ASN.1 syntax of the matching rule’s assertion syntax. This

is a string equal to the ASN.1 type name of the assertion syntax

defined for the built-in matching rule.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

72 Chapter 4: Defining schema

Examples

The following Stream DUA script reads all values of the matchingRules attribute:

read {

 organizationName “Deltawing”

}

return { matchingRules };

The following script defines the built-in matching rule caseIgnoreMatch:

modify {

 organizationName “Deltawing”

 / commonName "Subschema"

}

with changes {

 add values matchingRules {

 identifier { 2 5 13 2 },

 name { "caseIgnoreMatch" },

 information "DirectoryString{ub-match}"

 }

};

matchingRuleUse

This operational attribute identifies the attribute types that may be used with each

matching rule. The attribute is added to the subschema subentry.

The ViewDS DSA does not use the matchingRuleUse attribute. It is for the benefit

of third-party DUAs so that they can determine which matching rules can be used with

particular attributes.

The DSA allows any attribute whose attribute syntax is appropriate for any particular

matching rule to be used with that matching rule. The ViewDS DUAs have this

knowledge built in (since the matching rules supported by the DSA are built in).

NOTE: According to X.500, this attribute is not required where the use of a matching rule with

a particular attribute is implied by the attribute definition (that is, the matching rule is

the equality, ordering or substrings matching rule for the attribute).

The ASN.1 definition is:

matchingRuleUse ATTRIBUTE ::= {

 WITH SYNTAX MatchingRuleUseDescription

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {ds 21 8} }

MatchingRuleUseDescription ::= SEQUENCE {

 identifier MATCHING-RULE.&id,

 name SET OF DirectoryString { ub-schema } OPTIONAL,

 description DirectoryString { ub-schema } OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE,

 information [0] SET OF ATTRIBUTE.&id }

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 73

MatchingRuleUseDescription

identifier The object identifier of the matching rule (preferably its built-in

name).

name The set of symbolic names to be created for the matching rule.

This field is not used by ViewDS and can be omitted.

description A natural language description of the matching rule.

obsolete A flag that indicates that the matching rule is obsolete.

information The set of attribute types that can be used with the matching

rule. Each attribute type is specified by either a built-in symbolic
name, a symbolic name defined in the name field of a

previously defined attributeTypes value, or a numeric

object identifier.

Example

The following Stream DUA script specifies the matching rule keywordMatch, and

declares two attributes to be used with it.

modify {

 organizationName “Deltawing”

 / commonName "Subschema"

}

with changes {

 add values matchingRuleUse {

 identifier keywordMatch,

 information { organizationName, organizationalUnitName }

 }

};

nameForms

This operational attribute defines name forms and makes them available throughout a

subschema area. It is a multi-valued attribute, each value defining a name form, which

must be added to the subschema subentry. Both built-in and user-defined name forms

must be defined by this attribute.

nameForms ATTRIBUTE ::= {

 WITH SYNTAX NameFormDescription

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {ds 21 7} }

NameFormDescription ::= SEQUENCE {

 identifier NAME-FORM.&id,

 name SET OF DirectoryString { ub-schema } OPTIONAL,

 description DirectoryString { ub-schema } OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE,

 information [0] NameFormInformation }

NameFormInformation ::= SEQUENCE {

 subordinate OBJECT-CLASS.&id,

 namingMandatories SET OF ATTRIBUTE.&id,

 namingOptionals SET OF ATTRIBUTE.&id OPTIONAL }

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

74 Chapter 4: Defining schema

NameFormDescription

identifier The object identifier of the name form (preferably its built-in

name).

name The set of symbolic names to be created for the name form.

It is recommended that the name includes the name of the

relevant structural object class, and has the suffix NameForm.

description A natural language description of the name form. (ViewDS does

not use this component, but it may be useful for a third-party

DSA.)

obsolete A flag that indicates that the name form is obsolete.

information This component comprises the subcomponents described

below.

NameFormInformation

subordinate The name of the object class to which the name form is relevant

(‘subordinate’ is a misnomer). It is either a built-in symbolic
name, a symbolic name defined in the name field of a

previously defined objectClasses value, or a numeric object

identifier.

naming

Mandatories

The set of mandatory naming attributes for this name form.

Each attribute is specified by either a built-in symbolic name, a
symbolic name defined in the name field of a previously defined

attributeTypes value, or a numeric object identifier.

namingOptionals The set of optional naming attributes for this name form.

If more than one non-obsolete name form is defined for a
particular object class, the namingMandatories and

namingOptionals must be such that any particular

combination of naming attributes is permitted by at most one of

those name forms.

Examples

The following Stream DUA script reads all values of the nameForms attribute:

read {

 organizationName “Deltawing”

}

return { nameForms };

The following script adds a definition of a name form called orgPersonNameForm,

used to name organizational persons.

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 75

 add values nameForms {

 identifier { 2 5 15 6 },

 name { "orgPersonNameForm" },

 information {

 subordinate organizationalPerson,

 namingMandatories { commonName },

 namingOptionals { organizationalUnitName }

 }

 }

};

dITStructureRules

This operational attribute defines structure rules and makes them available throughout

a subschema area. It is a multi-valued attribute, each value defining one structure

rule. The attribute is added to the subschema subentry.

The ASN.1 definition is:

dITStructureRules ATTRIBUTE ::= {

 WITH SYNTAX DITStructureRuleDescription

 EQUALITY MATCHING RULE integerFirstComponentMatch

 USAGE directoryOperation

 ID {ds 21 1} }

DITStructureRuleDescription ::= SEQUENCE {

 COMPONENTS OF DITStructureRule,

 name [1] SET OF DirectoryString { ub-schema } OPTIONAL,

 description DirectoryString { ub-schema } OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE }

DITStructureRule ::= SEQUENCE {

 ruleIdentifier RuleIdentifier ,

 - must be unique within the scope of the subschema

 nameForm NAME-FORM.&id,

 superiorStructureRules SET OF RuleIdentifier OPTIONAL }

RuleIdentifier ::= INTEGER

DITStructureRuleDescription

name The set of symbolic names to be created for the structure rule.

This field is not used by ViewDS.

description A natural language description of the structure rule. This field is

not used by ViewDS.

obsolete A flag that indicates that the structure rule is obsolete.

DITStructureRule

ruleIdentifier The integer identifier of the structure rule. There are no built-in

identifiers. An integer should be assigned that is not being used

for another structure rule in the same subschema area.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

76 Chapter 4: Defining schema

nameForm The name form to which this structure rule pertains. It is either a
built-in symbolic name, a symbolic name defined in the name

field of a previously defined nameForms value, or a numeric

object identifier.

superior

StructureRules

The set of superior structure rules for this structure rule. Each
superior structure rule is specified by its ruleIdentifier, an

integer.

If more than one non-obsolete structure rule is defined for a

particular name form, they must be such that any particular

structure rule appears at most once in the
superiorStructureRules of all those structure rules.

Examples

The following Stream DUA script reads all values of the dITStructureRules

attribute:

read {

 organizationName "Deltawing"

}

return { dITStructureRules };

The following script adds a structure rule for organizational persons, and assigns it

identifier 23. Entries with this structure rule must be named as per

orgPersonNameForm, and must have an immediate superior entry with structure rule

11 or 12.

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

 add values dITStructureRules {

 ruleIdentifier 23,

 nameForm orgPersonNameForm,

 superiorStructureRules { 11, 12 },

 name { "orgPersonSR" }

 }

};

dITContentRules

This operational attribute defines content rules and makes them available throughout

a subschema area. Content rules are used to specify the auxiliary object classes and

additional attributes permitted in an object class. It is a multi-valued attribute, each

value specifying one content rule. The attribute is added to the subschema subentry.

The ASN.1 definition is:

dITContentRules ATTRIBUTE ::= {

 WITH SYNTAX DITContentRuleDescription

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {ds 21 2} }

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 77

DITContentRuleDescription ::= SEQUENCE {

 COMPONENTS OF DITContentRule,

 name [4] SET OF DirectoryString { ub-schema } OPTIONAL,

 description DirectoryString { ub-schema }OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE}

DITContentRule ::= SEQUENCE {

 structuralObjectClass OBJECT-CLASS.&id,

 auxiliaries SET OF OBJECT-CLASS.&id OPTIONAL,

 mandatory [1] SET OF ATTRIBUTE.&id OPTIONAL,

 optional [2] SET OF ATTRIBUTE.&id OPTIONAL,

 precluded [3] SET OF ATTRIBUTE.&id OPTIONAL }

DITContentRule

structuralObject

Class

The object identifier of the structural object class with which this

content rule is associated. It is either a built-in symbolic name, a
symbolic name defined in the name field of a previously defined

objectClasses value, or a numeric object identifier.

auxiliaries The set of allowed auxiliary object classes for entries with the

associated structural object class. Each object class is specified

by either a built-in symbolic name, a symbolic name defined in
the name field of a previously defined objectClasses value,

or a numeric object identifier.

If no content rule exists or this field is absent, no auxiliary object

classes are permitted for entries with this structural object class.

mandatory The set of additional mandatory attributes for entries with this

structural object class. Each attribute is specified either a built-
in symbolic name, a symbolic name defined in the name field of

a previously defined attributeTypes value, or a numeric

object identifier.

optional The set of additional optional attributes for entries with this

structural object class.

precluded The set of precluded optional attributes for entries of this

structural object class. It disallows optional attributes otherwise
allowed by the optionals field of the entry’s object classes.

name The set of symbolic names to be created for the content rule.

This field is not used by ViewDS and can be omitted.

description A natural language description of the content rule. ViewDS

does not use this field.

obsolete A flag that indicates whether the content rule is obsolete.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

78 Chapter 4: Defining schema

Examples

The following Stream DUA script reads all values of the dITContentRules attribute:

read {

 organizationName "Deltawing"

}

return { dITContentRules };

The following script adds a content rule for the structural object class

organizationalPerson, specifying mhs-user as a permitted auxiliary object

class, sortSubs as an additional optional attribute, and

teletexTerminalIdentifier as an excluded operational attribute.

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

 add values dITContentRules {

 structuralObjectClass organizationalPerson,

 auxiliaries { mhs-user },

 optional { sortSubs },

 precluded { teletexTerminalIdentifier }

 }

};

definitions

This operational attribute is defined in the XML Enabled Directory (XED) specification.

It holds user-provided XML schema language documents and makes their data type

definitions available for defining attribute syntaxes in a subschema area.

It is a multi-valued attribute. A particular XML schema language document may

appear in more than one subschema subentry; in which case, the same identifier

must be used in each subschema subentry.

The ASN.1 definition is:

definitions ATTRIBUTE ::= {

 WITH SYNTAX IdentifiedSchema

 EQUALITY MATCHING RULE schemaIdentityMatch

 USAGE directoryOperation

 ID { 1 3 6 1 4 1 21472 5 21 0 }

}

IdentifiedSchema ::= SEQUENCE {

 identifier SchemaIdentity,

 document SchemaDocument }

SchemaDocument ::= CHOICE {

 module [RXER:ELEMENT-REF {

 namespace-name

 "http://xmled.info/ns/ASN.1",

 local-name "module" }] AnyType,

 schema [RXER:ELEMENT-REF {

 namespace-name

 "http://www.w3.org/2001/XMLSchema",

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 79

 local-name "schema" }] AnyType,

 grammar [RXER:ELEMENT-REF {

 namespace-name

 "http://relaxng.org/ns/structure/1.0",

 local-name "grammar" }] AnyType,

 dtd ExternalSubset }

ExternalSubset ::= UTF8String (CONSTRAINED BY {

 -- contains an external DTD subset,

 -- i.e., text conforming to

 -- the extSubset production of XML -- })

SchemaIdentity ::= AnyURI

AnyURI ::= UTF8String (CONSTRAINED BY

 { -- conforms to the format of a URI -- })

Identifier

A URI that uniquely identifies the XML schema language document.

document

The document component holds as a child element (within an AnyType value, see

RFC 4910) the XML schema language document being imported into a subschema.

The child element must be either:

• a ‘schema’ element from the namespace ‘http://www.w3.org/2001/XMLSchema’

(that is, an XML Schema)

• an external DTD subset (that is, text conforming to the extSubset production of

XML)

• a ‘module’ element from the namespace ‘http://xmled.info/ns/ASN.1’ (that is, an

ASN.X module)

• a ‘grammar’ element from the namespace ‘http://relaxng.org/ns/structure/1.0’ (that

is, a RELAX NG schema)

The last two options (module and grammar) are unsupported in this version of

ViewDS.

subtreeSpecification

This operational attribute is in every subentry and defines the set of entries controlled

by the subentry. Its syntax is also used to define areas of replication (see Replicating

or distributing data on page 147) although these are not managed through subentries.

It must be added when a subentry is created.

The ASN.1 definition is:

subtreeSpecification ATTRIBUTE ::= {

 WITH SYNTAX SubtreeSpecification

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {ds 18 6}

}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

80 Chapter 4: Defining schema

SubtreeSpecification ::= SEQUENCE {

 base [0] LocalName DEFAULT {},

 COMPONENTS OF ChopSpecification,

 specificationFilter [4] Refinement OPTIONAL }

LocalName ::= RDNSequence

ChopSpecification ::= SEQUENCE {

 specificExclusions [1] SET OF CHOICE {

 chopBefore [0] LocalName,

 chopAfter [1] LocalName } OPTIONAL,

 minimum [2] BaseDistance DEFAULT 0,

 maximum [3] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

Refinement ::= CHOICE {

 item [0] OBJECT-CLASS.&id,

 and [1] SET OF Refinement,

 or [2] SET OF Refinement,

 not [3] Refinement }

Other operational attributes

These operational attributes provide information about a schema or its entries.

governingStructureRule

This operational attribute is calculated by the DSA when an entry is added to the

directory. Its value is the governing structure rule of the new entry, which may change

if the entry is renamed or moved.

governingStructureRule ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID {ds 21 10}

}

structuralObjectClass

This operational attribute is calculated by the DSA when an entry is added to the

directory. Its value is the structural object class of the entry, which is the same as one

of the objectClass attribute’s values.

structuralObjectClass ATTRIBUTE ::= {

 WITH SYNTAX OBJECT IDENTIFIER

 EQUALITY MATCHING RULE objectIdentifierMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID {ds 21 9}

}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 4: Defining schema 81

subschemaTimestamp

This operational attribute provides the last modification time of any subschema

operational attribute. It is used by Access Presence to determine whether its cached

copy of the schema attributes is current. It is available from any entry in the

subschema area.

subschemaTimestamp ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

 EQUALITY MATCHING RULE generalizedTimeMatch

 ORDERING MATCHING RULE generalizedTimeOrderingMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID {ds 18 8}

}

subschemaSubentry

This operational attribute provides the DN of the governing subschema subentry of an

entry.

subschemaSubentry ATTRIBUTE ::= {

 WITH SYNTAX DistinguishedName

 EQUALITY MATCHING RULE distinguishedNameMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID id-oa-subschemaSubentry

}

numberOfMasterEntries

This read-only operational attribute is only available in the root entry of the DSA. It

returns the number of master entries stored in the directory, which can then be

published by the DSA.

The attribute has the following definition:

numberOfMasterEntries ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 USAGE dSAOperation

 ID { iso(1) 2 36 79672281 directory(1) 12 0 }

}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

82 Chapter 4: Defining schema

numberOfShadowEntries

This read-only attribute is only available in the root entry of the DSA. It returns the

number of replicated entries stored in the directory, which can then be published by

the DSA.

It has the following definition:

numberOfShadowEntries ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 USAGE dSAOperation

 ID { iso(1) 2 36 79672281 directory(1) 12 1 }

}

Time and date attributes

The following operational attributes relate to time and date – all are generated

dynamically, except for userTimeZone. They are particularly useful when declaring

role-based access controls (see page 124) that support time-based refinements.

currentDateTime The DSA’s current local date and time in ISO 8601 format

with the difference from UTC. For example:
2007-09-19T15:49:10+10:00

currentTimeOfDay The DSA's current local time in ISO 8601 format with the
difference from UTC. For example: 15:49:10+10:00

currentDayOfWeek The current day of the week in the DSA's time zone:
monday, tuesday, wednesday, thursday, friday,

saturday or sunday. For ordering purposes, monday

has the lowest value and sunday has the highest value

(this aligns with ISO 8601).

userDateTime The user's local date and time in ISO 8601 format. For
example: 2007-09-19T13:49:10. The time zone is

determined by the userTimeZone attribute.

userTimeOfDay The user's local time of day in ISO 8601 format. For
example: 13:49:10

userDayOfWeek The current day of the week in the user's time zone.

userTimeZone A user-modifiable attribute that represents the time zone of

the user associated with the entry. If the attribute is absent,

the user is assumed to be in the same time zone as the

DSA. Its format is the time zone difference from UTC – the
trailing part of a currentDateTime or

currentTimeOfDay value. For example: +08:00

The corresponding matching rules are described in Appendix B.

 83

Chapter 5

 Indexes, extensions

and word lists

This chapter describes indexes and word lists (synonyms, noise words, truncated

words) which help optimize searches on a directory. It also describes attribute-type

extensions that allow an attribute’s value to be hashed, tracked (if it is a Distinguished

Name), or written to a separate file when the database is dumped.

The chapter has the following sections:

• Concepts

• Indexes

• Operational attributes

• Word lists

Concepts

Indexes and attribute-type extensions are configured through operational attributes

stored in a schema configuration subentry (see Figure 3 on page 52); while word lists

are stored in a subschema subentry.

The operational attributes for indexes, word lists and attribute-type extensions apply to

all entries in the same information plane – an information plane comprises either

master data or shadow data. Master data comprises entries that are not supplied by

another Directory System Agent (DSA) through replication; shadow data comprises

entries supplied by another DSA through replication (a supplier DSA sends entries to

a consumer DSA).

If an information plane has multiple subschema areas, then the indexes, extensions

and word lists are cumulative.

This chapter describes how to modify these operational attributes using the Stream

Directory User Agent (Stream DUA). However, they can also be configured through

the ViewDS Management Agent.

Indexes

Like all databases, ViewDS uses indexes to speed up access to its data. In ViewDS,

an index is a list of all entries sorted by a particular property. The index allows the

DSA to find the set of entries matching a search filter very rapidly.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

84 Chapter 5: Indexes, extensions and word lists

Unless a base entry other than the root is specified in a search request, ViewDS

requires at least one of the attributes in the request to be indexed before it will perform

the search.

It is normal to index most of the user attributes in a ViewDS directory. Exceptions

might be very long free-text attributes (for example, narrative text) for which the time

and space required for an index cannot be justified.

Attribute-type extensions

DN tracking

DN (Distinguished Name) tracking applies to an attribute type with a syntax that is (or

contains) a DN that references some other entry in the directory. When DN tracking is

enabled for an attribute type, it causes the DNs in its values to be automatically

updated when the referenced entry, or one of its superiors, is moved or renamed.

To illustrate, consider the manager attribute of the Deltawing entry in the

demonstration directory, Deltawing. By default, this attribute references the DN of the

entry for 'Margaret Hunter'. If the entry for 'Margaret Hunter' is moved to another

location in the DIT, then DN tracking ensures that the manager attribute in the

Deltawing entry still references Margaret’s entry correctly.

Attribute hashing

By default, the DSA stores and returns attribute values as clear text. It might be

desirable, however, to perform a one-way hash on the value of an attribute before

storing or returning it (for example, for attributes holding user passwords).

Dumping to a separate file

If an attribute has the syntax of OCTET STRING or BIT STRING, its values can be

written to a separate file when the database is dumped. This is useful for attributes

that store, for example, documents or images. Dumping to separate files allows a

document or image to be opened with an appropriate application.

To enforce security, the userPassword attribute cannot be dumped to a separate

file.

Word lists

There are three categories of word lists that can be associated with an attribute type:

• Synonyms – a set of words treated as equivalent when a user requests an

approximate match on one of the words in the set. For example, a set of synonyms

might be ‘high school’, ‘secondary college’ and ‘secondary school’.

• Noise words – these are keywords to be ignored when keyword-matching an

attribute value. They are usually words – such as 'the', 'and', ‘a’ – that are so

common to be rendered of little use for searching or indexing.

• Truncated words – these are preferred truncations for keywords to be used by the

DSA when building the hierarchyName attribute (see Technical Reference Guide:

User Interfaces).

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 85

Indexes

This subsection describes:

• Different kinds of indexes

• Specifying indexing and approximate matching

• Index maintenance

• Rebuilding indexes

• Virtual View List indexes

Different kinds of indexes

An attribute type can be indexed in many ways:

• entry index – identifies entries that have a matching value in their entry information

(attribute values). This excludes collective attributes, which only appear to be

present in an entry.

• RDN index – identifies entries that have a matching value in their Relative

Distinguished Name (RDN).

• DN index – identifies entries that have a matching value in their DN.

• collective index – identifies entries that have a matching value in a collective

attribute (that appears to be present in the entry).

An additional index, a base-object index, can be defined for an entire Directory

Information Tree (DIT). It identifies all entries that are subordinate to any given entry

(subtree enumeration).

With the exception of a base-object index, each index has a kind that determines the

kind of matching it supports.

IndexKind ::= ENUMERATED {

 none (0),

 -- special --

 presence (1),

 equality (2),

 substrings (3),

 approximate (4),

 -- equality indexes --

 case-ignore-string (10),

 case-exact-string (11),

 numeric-string (12),

 telephone-string (13),

 list-string (14),

 utc-time (15),

 generalized-time (16),

 integer (17),

 bit-string (18),

 octet-string (19),

 boolean (20),

 object-identifier (21),

 mapped-string (22),

 decimal (23),

 truncated-date-time (24),

 qualified-name (25),

 distinguished-name (26),

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

86 Chapter 5: Indexes, extensions and word lists

 mhs-case-ignore-string (27),

 mhs-all-case-ignore-string (28),

 xacml-policy-id (29),

 xacml-policy-set-id (30),

 xacml-embedded-policy-id (31),

 xacml-embedded-policy-set-id (32),

 xacml-named-expression-id (33),

 xacml-embedded-expression-id (34),

 xacml-rule-id (35),

 -- substring indexes --

 case-ignore-substring (40),

 case-exact-substring (41),

 numeric-substring (42),

 telephone-substring (43),

 list-substring (44),

 octet-substring (49),

 mhs-case-ignore-substring (51),

 mhs-all-case-ignore-substring (52),

 -- approximate match indexes --

 abbreviation (70),

 synonym (71),

 phonetic (72),

 typing (73),

 keyword (74),

 keyword-synonym (75),

 keyword-phonetic (76),

 keyword-typing (77),

 mapped-keyword (79),

 keyword-phonetic-mandarin (80)

}

The indexes are described below.

Special indexes

presence Specifies a presence index, which is used to support presence

matching. It is useful when no other indexing is specified, as

an equality index also supports presence matching.

Equality indexes

A string equality index supports equality and substring matches with a supplied

substring.

case-ignore-string

case-exact-string

Supports case-insensitive and case-sensitive string

matching of values of the syntaxes:

• DirectoryString{} ASN.1 type

• ASN.1 restricted string type (for example,
PrintableString)

• XML Schema string type (or subtypes/restrictions

thereof)

A case-ignore-string index is normally very effective

for case-sensitive matching. Therefore, a case-exact-

string index is usually unnecessary if there is also a

case-ignore-string index.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 87

numeric-string Supports numeric string matching (for example, using
numericStringMatch) of values of the NumericString

ASN.1 type (or a subtype thereof).

telephone-string Supports telephone number matching (for example, using
telephoneNumberMatch) of values of the

TelephoneNumber or PrintableString ASN.1 type (or

a subtype thereof).

list-string Supports case-insensitive matching of values of a

SEQUENCE OF DirectoryString{} ASN.1 type (for example,
PostalAddress).

utc-time Supports equality matching of values of the UTCTime

ASN.1 type (or a subtype thereof).

generalized-time Supports equality matching of values of the

GeneralizedTime ASN.1 type (or a subtype thereof) or the

XML Schema dateTime type (or a restriction thereof).

integer Supports equality matching of values of the INTEGER or

ENUMERATED ASN.1 type (or subtypes thereof) or the

XML Schema integer type (or a restriction thereof).

bit-string Supports equality matching of values of the BIT STRING

ASN.1 type (or a subtype thereof).

octet-string Supports equality and leading substring matching of values

of the OCTET STRING ASN.1 type (or a subtype thereof);

or the XML Schema hexBinary or base64binary types (or

restrictions thereof).

boolean Supports equality matching of values of the BOOLEAN

ASN.1 type or the XML Schema Boolean type.

object-identifier Supports equality matching of values of the OBJECT

IDENTIFIER ASN.1 type (or a subtype thereof).

decimal Supports equality matching of values of the XML Schema

decimal type (or a restriction thereof).

truncated-date-

time

Supports equality matching of values of the XML Schema

time, date, gYearMonth, gYear, gMonthDay, gDay or

gMonth type (or restrictions thereof).

qualified-name Supports equality matching of values of the XML Schema

QName type (or a restriction thereof).

distinguished-name Supports equality matching of values of the RDNSequence

ASN.1 type (or a subtype thereof, such as
DistinguishedName).

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

88 Chapter 5: Indexes, extensions and word lists

If the type of an attribute syntax is not one of the ASN.1 or XML Schema types

referred to by the preceding paragraphs then whole values of that attribute cannot be

indexed.

Substring indexes

A substring index supports arbitrary substring (including leading wildcard) matches.

Substring indexes are potentially much larger than equality indexes, and you should

only specify them if you expect typical search requests to include leading wildcard

substring matches.

case-ignore-

substring

case-exact-

substring

Support case-insensitive or case-sensitive substring

matching of values of the following syntaxes:

• DirectoryString{} ASN.1 type

• ASN.1 restricted string type (for example,
PrintableString)

• XML Schema string type (or subtypes/restrictions

thereof).

A case-ignore-substring index is normally very

effective for case-sensitive matching. Therefore, a case-

exact-substring index is usually unnecessary if there is

also a case-ignore-substring index.

numeric-substring Supports numeric string substring matching (for example,

using numericStringSubstringsMatch) of values of the

NumericString ASN.1 type (or a subtype thereof).

telephone-

substring

Supports telephone number substring matching (for

example, using telephoneNumberSubstringsMatch) of

values of the TelephoneNumber or PrintableString

ASN.1 type (or a subtype thereof).

list-substring Supports substring matching of values of a SEQUENCE OF

DirectoryString{} ASN.1 type.

octet-substring Supports substring matching of values of the OCTET

STRING ASN.1 type (or a subtype thereof) or the XML

Schema hexBinary or base64binary types (or restrictions

thereof).

X.400 indexes

mhs-case-ignore-

string

mhs-case-ignore-

substring

Support individual string components of attribute values of

ORName and ORAddress syntax. For example:

{

 type mhs-dl-members,

 component "built-in-standard-

 attributes.organization-name",

 index mhs-case-ignore-string

}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 89

mhs-all-case-

ignore-string

mhs-all-case-

ignore-substring

Support individual values of the ORName and ORAddress

syntax to build an index of all the character strings of the

value, irrespective of which component they belong to.

For example:

{

 type mhs-or-addresses,

 index mhs-all-case-ignore-string

}

X.400 matching rules

The X.400 matching rules are described in Appendix B on page 225. The relationships

between the X.400 indexes and matching rules are outlined below.

X.400 matching rule Uses X.400 index

oRNameSingleElementMatch Uses the mhs-all-case-ignore-string

index for the attribute, if it is available

orAddressMatch

orAddressElementsMatch

oRNameExactMatch

orNameMatch

oRNameElementsMatch

Use whatever mhs-case-ignore-string

component indexes are available, but will
fallback to using the mhs-all-case-

ignore-string index on the attribute, if it

is available.

oRAddressSubstringElements

Match

oRNameSubstringElements

Match

Use whatever mhs-case-ignore-

substring indexes are available, but will

fallback to using the mhs-all-case-

ignore-substring index on the attribute,

if it is available. This is the only scenario
when the mhs-all-case-ignore-

substring index is used.

When enabling component indexes for ORName and ORAddress attribute values it is

important to note that many of the components of these values are semantically

paired. It is therefore necessary to enable an index on each component in the pair.

For example, the following make up a pair:

built-in-standard-attributes.administration-domain-name.numeric

built-in-standard-attributes.administration-domain-name.printable

Another example pair is:

built-in-standard-attributes.organization-name

extension-attributes.*.extension-attribute-value.(3)

The simplest approach is to configure the mhs-all-case-ignore-string index on

the attribute type and rely on the fallbacks. This will give reasonable lookup

performance.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

90 Chapter 5: Indexes, extensions and word lists

Approximate indexes

abbreviation

synonym

phonetic

typing

These are approximate whole-value indexes that support the

following approximate match types, respectively:

• nk-abbrev

• nk-synonym

• nk-phonetic

• nk-typing

See attributeTypeExtensions on page 95.

Note: nk-prefix is supported by an equality index kind.

keyword-equal

keyword-synonym

keyword-phonetic

keyword-typing

keyword-phonetic-

mandarin

These are approximate keyword indexes that support the

following approximate match types, respectively:

• key-equal

• key-synonym

• key-phonetic

• key-typing

• key-phonetic-mandarin

See attributeTypeExtensions on page 95.

Specifying indexing and approximate matching

Indexing and approximate matching are specified through six operational attributes:

• attributeTypeExtensions

• baseObjectIndexing

• entryIndexing

• rdnIndexing

• dnIndexing

• collectiveIndexing

There is an additional operational attribute that temporarily defers index building

(useful when, for example, first loading the database): indexingDisabled.

Several operational attributes are indexed even if indexing is not specified by the

entryIndexing or attributeTypeExtensions attribute. This is necessary for

ViewDS to operate properly. If you specify more indexing than ViewDS needs (for

example, object-identifier where the DSA only needs presence), then this

additional indexing is performed as well as ViewDS’s required indexing.

Scope of indexes

The operational attributes for indexes are stored in a schema configuration subentry

(see Figure 3 on page 52). The indexes they define apply to all subschema areas in

the same information plane (see Concepts on page 83).

The operational attributes can also be added to the root entry from where they are

inherited by each schema configuration subentry subsequently created. This is of use

when the supplier in a replication agreement is a non-ViewDS DSA.

When the supplier is a non-ViewDS DSA, the operational attributes should be added

to the root of the consumer DSA. In this scenario – because the supplier does not

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 91

provide a configuration subentry – the consumer will automatically create one for the

shadow plane. This new configuration subentry then inherits the indexing operational

attributes from the root.

Index maintenance

The DSA maintains all specified indexes automatically, unless indexing is explicitly

disabled through the indexingDisabled attribute (see page 103). The DSA does

the following:

• maintains the indexes when entry information is modified through directory protocol

update operations (for example, in DAP, LDAP or XLDAP).

• builds, deletes or rebuilds indexes when index specifications are modified (through

the ViewDS Management Agent or Stream DUA).

• updates the relevant synonym index when a synonym is added or removed.

Rebuilding indexes

The DSA maintains all specified indexes automatically, although you may need to

rebuild them manually if they become corrupted.

The database’s indexes can be rebuilt in a single atomic transaction. During the

rebuild:

• Query operations can be performed using the old version of the indexes.

• Update operations are blocked (the DSA returns a serviceError with the

problem busy).

Rebuilding all indexes

To rebuild all indexes as a single transaction:

modify {

 organizationName “Deltawing”

 / commonName “Schema Configuration” }

with changes {

 add attribute indexingDisabled NULL,

 remove attribute indexingDisabled };

Rebuilding specific indexes

To rebuild specific indexes, remove and add the appropriate index configuration

attributes in a single modify operation. For example, to rebuild the synonym index for

organizationalUnitName:

modify {

 organizationName “Deltawing”

 / commonName “Schema Configuration” }

with changes {

 remove values entryIndexing {

 type organizationalUnitName

 value synonym },

 add values entryIndexing {

 type organizationalUnitName

 value synonym }

};

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

92 Chapter 5: Indexes, extensions and word lists

Virtual View List indexes

A Virtual List View is a way to return a set of data to a third-party application. For

example, an email client can be configured to make an LDAP connection to ViewDS,

extract the entries identified by a Virtual List View defined at the DSA, and use them to

populate its address book.

The indexes in this subsection are required to evaluate a Virtual List View search.

They can be configured through the ViewDS Management Agent (see the help topic

Define a Virtual List View).

viewDSListIndexing

An index for evaluating a Virtual List View request is configured by adding a value to

the viewDSListIndexing schema operational attribute. This attribute should be in a

schema configuration subentry with the other index configuration attributes (see page

Subschema area, administrative point and subentry on page 51).

viewDSListIndexing ATTRIBUTE ::= {

 WITH SYNTAX ListIndexDescription

 EQUALITY MATCHING RULE allComponentsMatch

 USAGE directoryOperation

 ID { 2 16 840 1 113730 3 4 9 }

}

ListIndexDescription ::= SEQUENCE {

 filter [0] Filter,

 order [1] SortKeyList

}

SortKeyList ::= SEQUENCE OF SEQUENCE {

 attributeType AttributeDescription,

 orderingRule [0] MATCHING-RULE.&id OPTIONAL,

 reverseOrder [1] BOOLEAN DEFAULT FALSE

}

The filter is an XLDAP Filter and SortKeyList is the request format of the

server-side sorting control for XLDAP.

filter

The filter must be equivalent to the filter in the LDAP or XLDAP search operation.

However, the terms in an ‘and’ or ‘or’ filter item can be in any order.

sortKeyList

A search operation with a Virtual List View control must have a sorting control.

The sort keys in the search operation must be the same as (or be a prefix of):

• the sort keys in the index configuration; or

• the sort keys in the index configuration, except the effective value of

reverseOrder in each sort key is the opposite.

If orderingRule is omitted, then it is treated as the implied ordering rule for the

attribute type. Attribute options in the sort keys are significant, and there must be at

least one sort key specified.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 93

It is not possible to configure an index where the effective value of reverseOrder is

TRUE, or where the filter contains a substrings filter item.

If no index matches the search filter and sort keys, then the request returns an error.

There is no fallback processing in the absence of a suitable index.

Examples

The following example Stream DUA operation adds an index to support Virtual List

View searches for person entries ordered on surname.

modify {

 organizationName "Deltawing"

 / commonName "Schema Configuration"

}

with changes {

 add attribute viewDSListIndexing

 {

 filter equalityMatch:{

 attributeDesc {

 type objectClass

 },

 assertionValue person

 },

 order {

 {

 attributeType {

 type surname

 },

 orderingRule caseIgnoreOrderingMatch

 },

 {

 attributeType {

 type givenName

 },

 orderingRule caseIgnoreOrderingMatch

 }

 }

 }

};

Supplying additional sort keys ensures that results are ordered predictably when

entries have the same values for the keys in a search request. So, for above the

example, if a client only specifies surname for the sort key, entries with the same

surname will be sorted according to their givenName attribute.

The following is an example Stream DUA command for a Virtual List View operation

that uses the example index.

ldap search {

 organizationName "Deltawing"

}

for (objectClass = "person")

return { surname givenName }

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

94 Chapter 5: Indexes, extensions and word lists

controls {

 controlType "1.2.840.113556.1.4.473",

 criticality TRUE,

 controlValue containing {

 {

 attributeType "surname",

 orderingRule "caseIgnoreOrderingMatch"

 }

 }

}

{

 controlType "2.16.840.1.113730.3.4.9",

 criticality TRUE,

 controlValue containing {

 beforeCount 0,

 afterCount 5,

 target byOffset:{

 offset 50,

 contentCount 100

 }

 }

};

The same index would be used if the sort control were as follows:

{

 controlType "1.2.840.113556.1.4.473",

 criticality TRUE,

 controlValue containing {

 {

 attributeType "surname",

 orderingRule "caseIgnoreOrderingMatch",

 reverseOrder TRUE

 }

 }

}

Or as follows:

{

 controlType "1.2.840.113556.1.4.473",

 criticality TRUE,

 controlValue containing {

 {

 attributeType "surname",

 orderingRule "caseIgnoreOrderingMatch"

 },

 {

 attributeType "givenName",

 orderingRule "caseIgnoreOrderingMatch"

 }

 }

}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 95

Operational attributes

The operational attributes for indexing are stored in a schema configuration subentry

(see Figure 3 on page 52).

attributeTypeExtensions

This operational attribute specifies additional configuration parameters for attribute

types. It is a multi-valued operational attribute, each value identifying an attribute type

and additional information.

The ASN.1 type definition is:

attributeTypeExtensions ATTRIBUTE ::= {

 WITH SYNTAX AttributeTypeExtension

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID vf 21 0 }

AttributeTypeExtension ::= SEQUENCE {

 identifier [0] OBJECT IDENTIFIER,

 indexing [1] Indexing DEFAULT in-none,

 dnTracking [2] BOOLEAN DEFAULT FALSE,

 approxMatchType [3] ApproximateMatchType OPTIONAL,

 valueFileSuffix [6] BMPString OPTIONAL,

 hashValues [7] BOOLEAN OPTIONAL,

 hashAlgorithm [8] UTF8String OPTIONAL,

 returnHash [9] BOOLEAN OPTIONAL,

 returnTagged [10] BOOLEAN OPTIONAL,

 deleteValuesReferencingDeleted [11] BOOLEAN DEFAULT TRUE,

 deleteValuesReferencingMoved [12] BOOLEAN DEFAULT TRUE

 matchQuality [13] MatchQualityControl OPTIONAL

}

Indexing ::= ENUMERATED {

 in-none (0), in-partial (1), in-full (2) }

ApproximateMatchType ::= BIT STRING {

 nk-prefix (1), nk-synonym (18), nk-phonetic (13),

 nk-typing (15), key-equal (5), key-prefix (6),

 key-synabb (7), key-phonetic (14), key-typing (16),

 key-suffix (12), nk-abbrev(17), key-phonetic-mandarin(80)

}

MatchQualityControl ::= SEQUENCE {

 bias INTEGER (-100..100)

}

identifier

The object identifier of the attribute being extended; it is either a built-in symbolic

name or a numeric object identifier.

indexing

indexing exists for historical reasons only.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

96 Chapter 5: Indexes, extensions and word lists

If you add a value of attributeTypeExtensions for an attribute and the

indexing field is set to in-partial or in-full, the DSA will:

1. Remove the indexing field.

2. Add an entryIndexing value to create the requested form of indexing.

Further changes to the indexing field of attributeTypeExtensions will not

affect entryIndexing.

The possible values for the indexing field are described below.

Value Description

in-none No indexing is specified. This is the default.

in-partial The attribute is indexed for presence. This is converted to a
value of entryIndexing with an IndexKind of presence.

in-full The attribute is indexed for equality. This is converted to a
value of entryIndexing with the IndexKind appropriate to

the equality matching rule of the attribute, and a value of
entryIndexing with the associated IndexKind for each

of the approximate match types (see page 96).

dnTracking

dnTracking is only relevant for attributes whose syntax is DistinguishedName or

contains one or more components of type DistinguishedName or LocalName.

If TRUE, the DSA automatically tracks the DN – that is, the attribute’s value will change

so that it continues to refer to the original entry even if that entry is renamed or moved

(on the same DSA).

Set this field is set to TRUE for attributes of the applicable syntaxes, unless the

attribute has values containing digitally signed content (such as X.509 certificates and

CRLs). In this case set it to FALSE.

NOTE: The aliasedEntryName and privilege attributes are always tracked.

Indexing attributes that have DN tracking

An entire DN, or a component of a DN, that is tracked can be indexed.

A component can be indexed if its component reference begins with -1. This is with

respect to the DN, which may itself be a component in an encompassing attribute

syntax. The remainder of the component reference, if any, is unrestricted.

For example, the component reference -1.*.value.(2.5.4.3) is supported for

the seeAlso attribute, but the component reference *.*.value.(2.5.4.3) is not.

The DSA will generate an error message if an index is configured with an unsupported

component reference for a DN-tracked attribute.

approxMatchType

This specifies the types of approximate matches performed for a string-type attribute.

They are applied when a filter request for an approximate match is received for the

attribute type.

The possible values are described below.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 97

Approximate match type Description

nk-prefix Prefix match on whole value.

nk-synonym Synonym match on whole value.

nk-phonetic Phonetic match on whole value.

nk-typing Typing correction match on whole value.

nk-abbrev Abbreviation match on whole value.

key-equal Equality match on keywords.

key-prefix Prefix match on keywords.

key-synabb Synonym match on keywords.

key-phonetic Phonetic match on keywords.

key-typing Typing correction match on keywords.

key-suffix Enables suffix stripping when forming keywords.

key-phonetic-

mandarin

Phonetically matches Mandarin using Hanyu Pinyin, a

system for representing the pronunciation of Mandarin

Chinese through a set of phonetic codes. Each phonetic

code is expressed as a word in the Roman (Latin)

alphabet.

A number of Chinese characters can have the same

phonetic code, and are treated as synonyms by this

approximate match mechanism. The mechanism also

recognises the phonetic code and matches it to the

Chinese characters with the associated pronunciation.

Generally, an attribute on which approximate matching is enabled has several of

these flags set.

If the attribute type is a string type and has nk-abbrev enabled, the DSA

automatically generates up to two abbreviations for each value. These abbreviations

then become additional synonyms to the ones explicitly added for the attribute type.

The automatically generated abbreviations are the first letters of each word in the

value, with and without noise words. However, if the attribute value ends in a word in

square brackets, then that word is the abbreviation. For example:

• The value Sales and Marketing Division generates the abbreviations SAMD

and SM (assuming and and Division are noise words).

• The value Business Planning [BusPlan] generates the abbreviation

BusPlan.

valueFileSuffix

valueFileSuffix allows you to specify that the value of an attribute should be

written to a separate file when the DSA receives a dump command. It only applies to

attribute types with the syntax OCTET STRING or BIT STRING.

If valueFileSuffix is present, the DSA dumps attributes of the attribute type using

the from path syntax for the generated entry command with the attribute value itself

written to a file.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

98 Chapter 5: Indexes, extensions and word lists

File names have the following format:

valNNNNN-MMM[valFileSuffix]

Where:

• NNNNN is the number of the associated dib file (dump file).

• MMM is an integer assigned by the DSA to identify distinct values associated with the

same dib file (it starts at 000 and increments as necessary).

• valueFileSuffix is the file extension (a typical value might be jpg)

To maintain security, the userPassword attribute cannot have a valueFileSuffix

specified.

hashValues

hashValues indicates whether an attribute’s values should be hashed. If set to TRUE,

a value of hashAlgorithm must also be specified.

When an attribute with this extension is modified, its value is converted from a clear-

text format to a hashed format. This operation cannot be reversed. When storing

hashed values, it is inappropriate to have indexing or approximate matching enabled.

Therefore, ViewDS disallows any attempt to enable either.

ViewDS allows hashing to be enabled for the following syntaxes:

• OCTET STRING

• IA5String

• UTF8String

• VisibleString

hashAlgorithm

This specifies the hash algorithm that values of an attribute are stored and returned in.

The following are the supported algorithms with the UTF8String values that can be

assigned to the hashAlgorithm field.

• x-hashed-crypt (Unix CRYPT)

• x-hashed-md5 (MD5)

• x-hashed-sha (SHA)

• x-hashed-sha1 (SHA1)

• x-hashed-ssha (SSHA)

Unix CRYPT is only available when ViewDS is running on a UNIX operating system.

The Unix CRYPT algorithm should only be used for password values that are typically

under 10 characters long.

returnHash

This specifies whether search and read operations will return the value of an attribute.

If set to TRUE, a value of hashAlgorithm must be set.

This extension has three possible settings:

• TRUE – the values returned for the attribute are in the hash format specified by

hashAlgorithm. If the value is not in the specified format, it is not returned.

• FALSE – values are never returned for the attribute.

• no value – if the attribute is userPassword, nothing is returned unless the

passwordEncryption operational attribute (see page 117) has been set.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 99

returnTagged

This indicates whether the returned hashed values are prefixed with a special tag to

identify the hash algorithm used.

The following tags identify the hash algorithms:

• {crypt} – Unix CRYPT

• {MD5} – MD5

• {SHA} – SHA

• {SHA} – SHA1

• {SSHA} - SSHA

This extension has no effect unless returnHash is TRUE.

deleteValuesReferencingDeleted

If set to TRUE, the DSA deletes a DN value when the entry it refers to is deleted. This

extension only applies if dnTracking is enabled.

deleteValuesReferencingMoved

If set to TRUE, the DSA deletes a DN value when the entry it refers to is moved to a

new superior. This extension only applies if dnTracking is enabled.

matchQuality

This allows a bias to be set for an attribute that influences its match-quality score

returned by viewDSMatchQuality (see the ViewDS Technical Reference Guide:

User Interfaces).

The range of the bias is from -100 to 100 where a negative value will improve the

match-quality score of the associated attribute, giving a ‘better’ match. A positive

value will decrease the match-quality score, giving a ‘worse’’ match.

The score returned by viewDSMatchQuality for all attributes is normalized within

the range of 0 to 100. Therefore, an attribute with a bias of -99, for example, will

always return a score between 0 and 100.

Examples

The following Stream DUA script reads all values of the

attributeTypeExtensions attribute. It is directed a schema configuration

subentry, which is where the attributeTypeExtensions attribute is normally held.

read {

 organizationName “Deltawing”

 / commonName “Schema Configuration”

}

return { attributeTypeExtensions };

The following script adds full equality indexing, and prefix and phonetic approximate

matching to the built-in attribute surname.

modify {}

with changes {

 add values attributeTypeExtensions {

 identifier surname,

 indexing in-full,

 approxMatchType {

 nk-prefix,

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

100 Chapter 5: Indexes, extensions and word lists

 nk-phonetic

 }

 }};

The following script adds value hashing to the userPassword attribute. It will allow

values of userPassword to be returned as MD5 hashes only.

modify { }

with changes {

 add value attributeTypeExtensions {

 identifier userPassword,

 hashValues TRUE,

 hashAlgorithm “x-hashed-md5”,

 returnHash TRUE,

 returnTagged FALSE

 }};

entryIndexing

This operational attribute specifies the kinds of entry index to build for an attribute.

The ASN.1 definition is:

entryIndexing ATTRIBUTE ::= {

 WITH SYNTAX IndexDescription

 EQUALITY MATCHING RULE indexDescriptionMatch

 USAGE dSAOperation

 ID {vf 21 1} }

IndexDescription ::= SEQUENCE {

 type [0] AttributeType,

 component ComponentReference OPTIONAL,

 path [3] ComponentPath OPTIONAL,

 index [1] IndexKind }

 (WITH COMPONENTS { …, component ABSENT } |

 WITH COMPONENTS { …, path ABSENT })

ComponentReference ::= UTF8String

ComponentPath ::= Markup

 (CONSTRAINED BY

 { -- component path expression -- })

The IndexDescription allows you to declare an index for an entire attribute value

or an index for a component of an attribute value. Both options are described below.

Index entire attribute

If neither the component nor path fields are declared (the typical case) then index

specifies an index of IndexKind for the entire value of the attribute type.

To illustrate, the following Stream DUA script adds a case-ignore-string index

to support efficient equality and prefix matching on the commonName attribute:

modify { }

with changes {

 add value entryIndexing {

 type commonName,

 index case-ignore-string

 }

};

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 101

Index a component of an attribute

If either the component or path fields are declared, then index specifies an index of

IndexKind for a component value of the attribute type. (Only one of these fields can

be present in an IndexDescription.)

component

If the component field is present:

• ComponentReference identifies a component value of an attribute type with a

syntax defined in ASN.1; and

• index identifies an indexKind to be applied to the above component value.

The format for ComponentReference strings is described in RFC 3687.

The index must be an IndexKind applicable to the data type of the identified

component part (rather than to the attribute’s syntax as a whole).

The following Stream DUA script adds an object-identifier index to support

equality matching on the objectClasses attribute.

modify { }

with changes {

 add value entryIndexing {

 type objectClasses,

 component “identifier”,

 index object-identifier

 }

};

Note that the equality matching rule for the objectClasses attribute is

objectIdentifierFirstComponentMatch and that the first component of an

objectClasses attribute value is an OBJECT IDENTIFIER named identifier.

path

If the path field is present:

• ComponentPath identifies a component value of an attribute type with a syntax

defined in XML Schema or ASN.1, or defined by a DTD; and

• index identifies an indexKind to be applied to the above component value.

The format for ComponentPath, which is based on XPath notation, is described in

draft-legg-xed-matching-xx.txt (available from http://xmled.info).

The index must be an IndexKind applicable to the data type of the nominated

component part (rather than to the attribute’s syntax as a whole).

rdnIndexing

This operational attribute specifies the kinds of RDN index to build for an attribute

type. An RDN index supports dnAttributes matches on values that occur in DNs,

but occur more frequently in entries as non-naming attributes (for example,

locality). A dnAttributes match is a match for an attribute that occurs in an

entry or in its DN.

An RDN index is redundant if a DN index is specified for the same attribute type.

However, it results in a smaller index and does not affect the performance of move

and rename operations.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

102 Chapter 5: Indexes, extensions and word lists

The ASN.1 definition is:

rdnIndexing ATTRIBUTE ::= {

 WITH SYNTAX IndexDescription

 EQUALITY MATCHING RULE indexDescriptionMatch

 USAGE dSAOperation

 ID {vf 21 2} }

dnIndexing

This operational attribute specifies the kinds of DN index to build for an attribute type.

A DN index supports dnAttributes matches. Every entry is indexed on the RDN

values of itself and its superiors.

This index results in much faster dnAttributes matches, but makes move and

rename operations more expensive. Use only for large databases in which the non-

leaf entry structure is relatively static (for example, White Pages).

If a DN or collective index is specified, then base-object indexing (without aliases) will

occur regardless of the presence of the baseObjectIndexing attribute.

The ASN.1 definition is:

dnIndexing ATTRIBUTE ::= {

 WITH SYNTAX IndexDescription

 EQUALITY MATCHING RULE indexDescriptionMatch

 USAGE dSAOperation

 ID {vf 21 4}

}

collectiveIndexing

This operational attribute specifies the kinds of collective index to build for an attribute

type.

A collective index supports collective-attribute matches (matches that find all entries

that appear to have a particular collective attribute). Use this instead of an entry index

for collective attributes (an entry index for a collective attribute will index only the

subentries that actually hold the attribute). A collective index makes move and rename

operations more expensive.

If a collective index is specified, then base-object indexing (without aliases) will occur

regardless of the presence of the baseObjectIndexing attribute.

The ASN.1 definition is:

collectiveIndexing ATTRIBUTE ::= {

 WITH SYNTAX IndexDescription

 EQUALITY MATCHING RULE indexDescriptionMatch

 USAGE dSAOperation

 ID {vf 21 5}

}

baseObjectIndexing

This operational attribute causes enumerated subtree lists to be maintained for every

entry. In the absence of an appropriate DN or collective indexes, this removes the

need for tree traversals when the DSA evaluates dnAttributes matches or

collective-attribute filter items.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 103

The ASN.1 type definition is:

baseObjectIndexing ATTRIBUTE ::= {

 WITH SYNTAX BaseObjectIndexing

 EQUALITY MATCHING RULE integerMatch

 USAGE dSAOperation

 ID vf 21 3}

BaseObjectIndexing ::= ENUMERATED {

 withoutAliases (0), withAliases (1)

}

The attribute is multi-valued with up to two values.

Enabling baseObjectIndexing speeds up a search request that includes a base

object – it limits the scope of a search to an area of the full DIT. For example, consider

a large database in which entries are organized by locality – depending on the search

criteria, all entries outside a particular locality could be excluded from further

evaluation.

The value withoutAliases maintains subtree lists in which aliased entries are

excluded, and supports searches that do not specify alias dereferencing in the search

subtree. The value withAliases maintains subtree lists in which aliased entries are

included, and supports searches that specify alias dereferencing in the search

subtree.

These indexes may make move operations slightly more expensive.

indexingDisabled

This operational attribute disables indexing temporarily – this is useful when, for

example, initially loading the database.

The ASN.1 type definition is:

indexingDisabled ATTRIBUTE ::= {

 WITH SYNTAX NULL

 SINGLE VALUE TRUE

 USAGE dSAOperation

 ID {vf 21 6}

}

If this attribute is added to a schema configuration subentry, all indexes in the same

information plane are disabled. The indexing operational attributes are not altered,

and they can still be modified, but any such modifications will have no immediate

effect. When the indexingDisabled attribute is removed, all indexes are rebuilt.

The Stream DUA operation empty for filling adds indexingDisabled at the

beginning of a load using ViewDS Fast Load (see page 11). The operation fill

removes indexingDisabled at the end of a fast load, which results in automatic

building of the indexes. This is the fastest way to load a database.

automaticIndexing

This operational attribute is a single-valued Boolean. If set to TRUE, automatic

indexing is enabled. If set to FALSE – or absent from the schema configuration

subentry – automatic indexing is disabled.

The ASN.1 type definition is:

automaticIndexing ATTRIBUTE ::= {

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

104 Chapter 5: Indexes, extensions and word lists

 WITH SYNTAX BOOLEAN

 EQUALITY MATCHING RULE booleanMatch

 SINGLE VALUE TRUE

 USAGE dSAOperation

 ID id-adacel-soa-automaticIndexing

}

When this operational attribute is added to the schema configuration subentry and set

to TRUE, equality indexes are created for all attribute types that have a description in

the associated subschema subentry.

When you use either ViewDS Fast Load or Stream DUA to load an LDIF content

record for a root entry, two operations occur. First, the database is emptied, and then

the root entry is initialized to the contents of the LDIF content record. Automatic

indexing is enabled, unless the LDIF content record includes the

automaticIndexing attribute set to FALSE.

When using the LDIF dump format, the DSA ensures consistent behaviour between a

dump and reload. When the DSA performs an LDIF dump, it ensures that the

automaticIndexing attribute is in the content record it creates for the root entry. If

this attribute is absent from the current root entry, the dumped value is set to FALSE.

Word lists

To improve approximate matching, the DSA allows you to define synonyms, noise

words and truncated words for an attribute (or a component of an attribute) with a

string type.

Synonyms are a set of words treated as equivalent when a user requests an

approximate match on one of the words in the set. For example, a set of synonyms

might be ‘high school’ and ‘secondary college’.

There are two kinds of synonyms:

• Non-keyword synonyms

A set of non-keyword synonyms comprises phrases of one or more words. Each

entire phrase in the set is equivalent. So, for the above example set of synonyms, a

search on ‘high school’ would return matches on both ‘high school’ and ‘secondary

college’.

• Keyword synonyms

A set of keyword synonyms comprises phrases of one or more words. Each phrase

in the set is equivalent, and is also equivalent to any other phrase they appear in.

To illustrate with the above example, a search on ‘stevenville high school’ would

match ‘stevenville secondary college’; and a search on ‘high school’ would also

match ‘stevenville secondary college’.

Synonyms only apply if the approximateMatchType defined for the attribute type

specifies non-keyword synonyms (nk-synonym) or keyword synonyms (key-

synonym).

When an attribute type has a set of synonyms declared, the synonyms apply to all

values of that type stored by the DSA. By default, sets of synonyms are included in

the information a DSA replicates to another DSA.

Noise words are keywords to be ignored when keyword-matching an attribute value

and when forming abbreviations. They are also omitted when the DSA constructs the

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 105

value of a hierarchyName attribute (see Technical Reference Guide: User

Interfaces).

The special noise word ‘0’ (digit 0) indicates that all numbers in an attribute value

should be treated as noise words.

Truncated words are preferred truncations for keywords to be used by the DSA when

building the hierarchyName attribute.

Operational attributes

Synonyms, noise words and truncated words are declared in operational attributes

stored in a subschema subentry, and apply to all subschema areas in the same

information plane (see Concepts on page 83).

ViewDSSynonyms

This operational attribute declares synonyms.

viewDSSynonyms ATTRIBUTE ::= {

 WITH SYNTAX ComponentSynonymList

 EQUALITY MATCHING RULE directoryComponentsMatch

 USAGE directoryOperation

 ID { 1 3 6 1 4 1 21473 5 21 0 }

}

ComponentSynonymList ::= SEQUENCE {

 type [0] AttributeType,

 path [1] ComponentPath OPTIONAL,

 synonyms [2] SEQUENCE OF synonym UTF8String

}

If the path field is present:

• ComponentPath identifies a component value of an attribute type with a syntax

defined in XML Schema or ASN.1, or defined by a DTD; and

• synonyms identifies a sequence of synonyms that apply to the component value.

The format for ComponentPath, which is based on XPath notation, is described in

draft-legg-xed-matching-xx.txt (available from http://xmled.info).

ViewDSCombinedSynonyms

This is a read-only operational attribute that lists an entry’s synonyms. It is constructed

when an entry is read and cannot be modified.

viewDSCombinedSynonyms ATTRIBUTE ::= {

 WITH SYNTAX ComponentSynonymList

 EQUALITY MATCHING RULE directoryComponentsMatch

 USAGE dSAOperation

 ID { 1 3 6 1 4 1 21473 5 21 1 } }

ViewDSNoiseWords

This operational attribute declares noise words.

viewDSNoiseWords ATTRIBUTE ::= {

 WITH SYNTAX ComponentWordList

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID { 1 3 6 1 4 1 21473 5 21 2 }

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

106 Chapter 5: Indexes, extensions and word lists

}

ComponentWordList ::= SEQUENCE {

 type [0] AttributeType,

 path [1] ComponentPath OPTIONAL,

 words [2] SEQUENCE OF word UTF8String

}

If the path field is present:

• ComponentPath identifies a component value of an attribute type with a syntax

defined in XML Schema or ASN.1, or defined by a DTD; and

• words declares a sequence of noise words that apply to the component value.

The format for ComponentPath, which is based on XPath notation, is described in

draft-legg-xed-matching-xx.txt (available from http://xmled.info).

ViewDSCombinedNoiseWords

This is a read-only attribute that lists an entry’s noise words. It is constructed when an

entry is read and cannot be modified.

viewDSCombinedNoiseWords ATTRIBUTE ::= {

 WITH SYNTAX ComponentWordList

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE dSAOperation

 ID { 1 3 6 1 4 1 21473 5 21 3 }

}

ViewDSTruncatedWords

This operational attribute declares truncated words.

viewDSTruncatedWords ATTRIBUTE ::= {

 WITH SYNTAX ComponentWordList

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID { 1 3 6 1 4 1 21473 5 21 4 } }

ComponentWordList ::= SEQUENCE {

 type [0] AttributeType,

 path [1] ComponentPath OPTIONAL,

 words [2] SEQUENCE OF word UTF8String }

If the path field is present:

• ComponentPath identifies a component value of an attribute type with a syntax

defined in XML Schema or ASN.1, or defined by a DTD; and

• words declares a sequence of truncated words that apply to the component value.

The format for ComponentPath, which is based on XPath notation, is described in

draft-legg-xed-matching-xx.txt (available from http://xmled.info).

http://xmled.info/

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 5: Indexes, extensions and word lists 107

ViewDSCombinedTruncatedWords

This is a read-only attribute that lists an entry’s truncated words. It is constructed

when an entry is read and cannot be modified.

viewDSCombinedTruncatedWords ATTRIBUTE ::= {

 WITH SYNTAX ComponentWordList

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE dSAOperation

 ID { 1 3 6 1 4 1 21473 5 21 5 }

}

 109

Chapter 6

 Managing security

This chapter provides an overview of ViewDS security. It describes how configure

ViewDS to authenticate users and to control their access to a directory. The chapter

also describes LDAP password management along with other miscellaneous aspects

of ViewDS security.

It has the following sections:

• Authentication

• Access control

• LDAP password management

• Miscellaneous security topics

Authentication

This sections describes the following:

• Overview of authentication

• Strong authentication

• Authentication attributes

• Simple Authentication and Security Layer (SASL)

Overview of authentication

The X.500 security model makes a distinction between authentication and access

control.

To access a Directory System Agent’s (DSA’s) directory, a Directory User Agent

(DUA), another DSA or the ViewDS Management Agent must first authenticate to the

DSA using a bind request. When making a bind request, the requestor presents

credentials, which serve to authenticate its identity. The recipient DSA responds by

signalling that it accepts or rejects the bind request. If it accepts, the DSA may also

return its own credentials to the requestor.

Once authenticated, the current connection needs no further authentication in order to

access directory information. Access is granted according to the requestor’s access

rights, which are determined by the access control scheme implemented.

Levels of authentication

X.500 provides different levels of authentication depending on the credentials in a bind

request. ViewDS accepts three kinds of credentials: none, simple (using unprotected

password) and strong.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

110 Chapter 6: Managing security

None (no authentication)

None (no authentication) is only available if enabled by the anonymousPrivilege

operational attribute in the DSA’s root entry. This attribute can be set up as required,

but should normally be present to allow Access Presence to perform the GetMyDN

procedure (see page 111).

Simple authentication

The DSA verifies that the password is correct for the user name supplied in the

credentials by checking either the:

• userPassword attribute in the user's entry (for a DUA bind); or

• dsaCollaborators operational attribute in the root entry (for a DSA bind).

These attributes are described under Authentication attributes on page 115.

The DSA returns simple credentials to the bind initiator as acceptance of the bind. The

name in the credentials is the name stored in the myAccessPoint attribute of the

root entry (see page 159). A password is also returned if the bind initiator is a DSA;

and there is a myPassword component in the dsaCollaborators attribute for the

other DSA.

Strong authentication

Strong authentication is available if the DSA has either a cACertificate attribute in

its root entry, or a certificate in one of its explicit trust stores.

The values of cACertificate are the certificates of the Certification Authorities

(CAs) that the DSA trusts (that is, its trust anchors). For the DSA to support two-way

strong authentication it must be configured with its own private key and certificate.

For explicit trust, the DSA performs a comparison against a set of trusted certificates

in its trust stores. The trust stores are:

• the DSA’s trusted directory (identified by the configuration-file parameter

dsatrusted) – this is used for strong authentication between DSA and Remote

Administration Service (RAS), and between users of the ViewDS Management

Agent and the DSA and RAS.

• the certificate field in dsaCollaborators – this is used for strong

authentication between DSAs.

Strong authentication is discussed further on page 112.

Super-administrator

A user with super-administrator privileges can perform operations that bypass the

access controls defined by the DSA’s access control scheme (see page Access

control on page 121). They can also perform additional operations (such as dump,

checkpoint, verify, etc.) that are unavailable with any other privilege.

The super-administrator privilege can be obtained through either simple authentication

using the deity password, or strong authentication using explicit trust. Both these

options are outlined below.

Simple authentication using the deity password

The DSA assigns the super-administrator privilege to a user who authenticates with

the following credentials:

• the Distinguished Name (DN) of the root entry (an empty RDN sequence); and

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 111

• a special password which is a random string created by DSA at start-up.

The password is held in the file specified by the configuration-file parameter

admpasswd (usually ${VFHOME}/general/deity). Normally, only the owner of the

DSA process can read this file.

Strong authentication using explicit trust

Alternatively, a super-administrator can be an identity that authenticates using strong

authentication and has a certificate in the DSA’s trusted directory. This form of strong

authentication is used between the ViewDS Management Agent, DSA and RAS. It is

not intended for other users. (Strong authentication is discussed further on page 112.)

GetMyDN procedure

A user must supply a DN and password when binding. However, as a DN is long and

unwieldy, most users would be unwilling to type theirs in when connecting to a DUA.

Therefore, Access Presence supports a procedure that allows a user to obtain their

DN. The procedure, GetMyDN, is invoked transparently when a user logs into Access

Presence.

With GetMyDN, a user simply enters a user name and password, and the DUA binds

to the DSA with simple credentials consisting of an empty DN without a password.

The DUA then invokes a search operation for all entries below a supplied base-entry.

This search filter comprises:

• an equality match for the ViewDS-specific attribute viewDSUserName; and

• an equality match for the standard X.500 attribute userPassword.

The search must not request the return of attribute information. Such a search is

recognized as a GetMyDN search and ViewDS implements special security provisions

for it.

If the DUA finds that exactly one entry matches the search criteria, it knows that the

search result contains the user’s DN. The DUA then unbinds, and rebinds using that

DN and the password entered by the user. The DUA’s cache the returned DN so that

this procedure is needed only if the normal bind fails.

For a GetMyDN search to be allowed, access controls must be set up appropriately:

• If ViewDS Access Control is used (see page 121), the anonymousPrivilege

attribute must be set up to allow anonymous binds for the initial bind operation to be

accepted. (See page 127 for a description of the anonymousPrivilege attribute

and an appropriate Stream DUA script.)

• If Basic Access Control or Simplified Access Control is used (see page 121), there

should be ACI items granting allUsers a filterMatch on viewDSUserName

and userPassword. Note that even if such an ACI item is present, ViewDS will not

permit searches on userPassword for anything other than GetMyDN searches.

The success of the GetMyDN procedure depends on the combination of user name

and password being unique. Access Presence checks that this uniqueness will not be

compromised prior to accepting a request to change a user name or password.

However, uniqueness is not guaranteed when the subtree below the base object is

distributed across DSAs or when non-ViewDS DUAs are used to change user names

or passwords.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

112 Chapter 6: Managing security

Strong authentication

Trusted CAs

Strong authentication requires the DSA to maintain a list of the Certification Authorities

(CAs) and their public keys, which it ultimately trusts in regard to the user and CA

certificates they issue. This list of CAs is stored as values of the standard X.509

attribute cACertificate in the root entry of the DSA.

To add a CA to the list of trusted CAs, use Stream DUA with the -d option (to allow

access to the root entry), and add a value of cACertificate to the root entry. A new

CA can also be added through the ViewDS Management Agent.

Explicit trust

ViewDS also implements strong authentication based on explicit comparison with a

set of trusted certificates. This is used to provide:

• two-way trust between the DSA and RAS;

• one-way trust between a ViewDS Management Agent user and DSA; and

• one-way trust between a ViewDS Management Agent user and RAS.

Verification is through explicit trust of individual certificates in the following directories:

• the DSA’s trusted directory (identified by the configuration-file parameter

dsatrusted – by default, ${VFHOME}/setup/trusted); and

• the RAS’s trusted directory (identified by then configuration-file parameter

rastrusted – by default, ${VFHOME}/setup/trusted).

Entities authenticated in this way are granted the super-administrator privilege (see

page 110). Explicit trust should not be used to set up credentials for normal users.

Public–private key pairs

The DSA, RAS and ViewDS Management Agent require public-private key pairs.

DSA key pair

For the DSA to authenticate itself strongly to a DUA (a two-way bind), it needs its own

key pair represented as a certificate and private key. The certificate is declared in the

configuration-file parameter dsacertificate (by default, ${VFHOME}/setup/

dsa.cer).

The DSA’s user certificate must be created by a CA. It must also bind the DSA’s name

– stored in its myAccessPoint attribute (see page 159) – to the public key of the

DSA’s public–private key pair. ViewDS does not include a CA, or functionality to

generate a public–private key pair. Your ViewDS vendor can, however, help you

obtain software for both purposes.

The DSA also needs a private key. The private key can be made available to the DSA

in either a PKCS#8 format file (defined in the PKCS #8 RSA Encryption Standard,

Nov. 1993) or a PKCS#12 format file (PKCS #12 Personal Information Exchange

Syntax, June 1999).

For PKCS#8 file format, the private key can be declared as a BER encoded value of

either of the following ASN.1 types:

• PrivateKeyInfo – the value is stored as clear-text in the file specified by the

configuration-file parameter dsaprivkey (by default, ${VFHOME}/setup/dsa.pk8).

The file should be made read-only to the owner of the DSA process.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 113

• EncryptedPrivateKeyInfo – the value is stored in the file specified by the

configuration-file parameter dsaprivkey. The encryption password is stored in the

file specified by the configuration-file parameter dsaprivpass (by default,

${VFHOME}/general/keyaccess). If the keyaccess file is missing or cannot be

accessed, the format of the dsa.pk8 file is assumed to be clear-text.

Alternatively, the configuration-file parameters dsacertificate and dsaprivkey

can be directed to a PKCS#12 file. This allows the DSA to obtain both its public- and

private-key information from the same file.

A PKCS#12 file may be encrypted. In this case, the passphrase used to protect the

content of the file must be provided in the file identified by the configuration-file

parameter dsaprivpass.

It is also possible to configure the DSA to obtain the private key from a PKCS#12 file

and the certificate from a separate BER encoded certificate file.

RAS key pair

For the RAS to authenticate itself strongly to a DSA (a two-way bind), it needs a user

certificate. The certificate is declared in the configuration-file parameter

rascertificate (by default, ${VFHOME}/setup/ras.cer).

The RAS also needs a private key, which can be made available to it in either a

PKCS#8 or a PKCS#12 format file.

For PKCS#8 file format, the RAS’s private key can be declared as a BER encoded

value of either of the following ASN.1 types:

• PrivateKeyInfo – the value is stored as clear-text in the file specified by the

configuration-file parameter rasprivkey (by default,

${VFHOME}/setup/ras.pk8). The file should be made read-only to the owner of

the RAS process.

• EncryptedPrivateKeyInfo – the value is stored in the file specified by the

configuration-file parameter rasprivkey. The encryption password is stored in the

file specified by the configuration-file parameter rasprivpass (by default,

${VFHOME}/general/keyaccess). If the keyaccess file is missing or cannot be

accessed, the format of the ras.pk8 file is assumed to be clear-text.

Alternatively, the rascertificate and rasprivkey configuration-file parameters

can be directed to a PKCS#12 file.

If the PKCS#12 is encrypted, the passphrase must be provided in the file identified by

the configuration-file parameter rasprivpass.

It is also possible to configure the RAS to obtain the private key from a PKCS#12 file

and the certificate from a separate BER encoded certificate file.

ViewDS Management Agent key pair

Each user of the ViewDS Management Agent must have a key pair. Otherwise, the

ViewDS Management Agent will not be able to connect to either the DSA or RAS.

This key pair must be in the certificate store of the user’s desktop. The user’s

certificate must also be exported from the certificate store and placed in the trusted

directory of the DSA and RAS.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

114 Chapter 6: Managing security

Other authentication requirements

For strong authentication to succeed, the user must either:

• supply their user certificate in the bind credentials;

• have a directory entry that contains a user certificate whose subject name matches

their bind name; or

• have their user certificate in the DSA’s trusted directory. In this case, there is no

further validation, the identity for access control is the DN in the certificate, and the

authenticated session has the super-administrator privilege.

For the first two options, the user certificate must be certified by one of the DSA’s

trusted CAs, either directly or indirectly. If it is not directly certified, the DSA will

attempt to construct a certification path from the CA that signed the certificate to one

of its trusted CAs. The certificate for an intermediate CA must be stored in its DIT

entry in either the cACertificate or crossCertificatePair attribute.

When the configuration-file parameter certrevocation (by default, on) is set to

off, the DSA can use the certificates supplied in the CACertificates parameter of

the bind argument when forming the certification path.

Locating the user’s and intermediate CA’s certificates

When the user has a directory entry containing a user certificate whose subject name

matches their bind name, the configuration-file parameter certificatelookup

specifies how the DSA locates the user’s and intermediate CAs’ certificates.

The parameter is set to either: SubjectNameIsEntryName or

MapSubjectNameToEntryName. Each option is described below.

SubjectNameIs

EntryName

When certificatelookup is set to

subjectNameIsEntryName, the DSA finds a certificate in the

directory using the subject name. It reads the entry with the DN

matching the subject name of the certificate and looks for either:

• the end-entity certificate in the userCertificate attribute;

or

• intermediate CA certificates in the cACertificate attribute

or crossCertificatePair attribute.

This option requires certificates to be stored in a directory entry

whose DN matches the subject name in the certificate.

This is not always practical as many CAs use naming policies

that are not compatible with the naming policy of the directory.

There is also the problem that DNs in the directory can often be

changed to reflect organisational changes. However, subject

names in certificates are not expected to change very often –

when they do change, the certificate must be re-signed by the

CA.

MapSubjectName

ToEntryName

When certificatelookup is set to

mapSubjectNameToEntryName, the DSA searches the entire

DIT for an entry containing the required certificate with the

matching subject name. This provides support if your CA naming

policy does not match your directory naming policy.

The DSA then uses the entry containing the matching certificate,

in the case of the end-entity certificate, as the authentication

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 115

identity for subsequent processing of operations on the

authenticated connection.

If the required certificate is stored in more than one entry, the

authentication request fails. This is because the DSA cannot

determine which is the valid authentication identity to use in

subsequent processing.

The mapSubjectNameToEntryName option provides greater

flexibility in terms of where certificates can be stored, but it is less

efficient. Part of this efficiency problem is addressed by the DSA

automatically indexing the subject name of certificates in the
userCertificate, cACertificate and

crossCertificatePair attributes. These indexes are used

during certificate lookup.

Authentication attributes

ViewDSUserName

This attribute is a simple text string that associates a user name with a user.

ViewDSUserName ATTRIBUTE ::= {

 SUBTYPE OF name

 WITH SYNTAX DirectoryString {64}

 USAGE directoryOperation

 ID {vf 18 2} }

By convention, a user name is formed by concatenating the first letter of the user’s

givenName with their surname, and then truncating the result to seven characters.

Access Presence uses the GetMyDN procedure to look up the DN for the user to use

in the authentication process. However, as user names are not unique, each

combination of user name and password must be unique for GetMyDN to succeed.

NOTE: userName and view500UserName are alternative names for this attribute.

userPassword

This multi-valued attribute is an octet string that holds the plain-text password supplied

by the user in a bind operation.

The attribute’s definition is as follows:

userPassword ATTRIBUTE ::= {

 WITH SYNTAX OCTET STRING

 EQUALITY MATCHING RULE octetStringMatch

 ID {ds 4 35} }

The DSA implements special behaviour for the userPassword attribute:

• No user can read a clear-text value of userPassword (including the super-

administrator using Stream DUA). However, if passwordEncryption (see

page 117) or a value-hashing scheme is defined, then values can be read in

encrypted form.

• A value is never dumped or recorded in logs in clear-text form. It is always dumped

or recorded in encrypted form using the key set through the DSA Controller or the

default key. For security reasons, the userPassword value will not be dumped to

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

116 Chapter 6: Managing security

a file via the valueFileSuffix mechanism (see the definition of the

attributeTypeExtension on page 95 for more information).

• A value can be compared (using a compare operation) without restriction.

• A value can be used in evaluating a search filter only if the search filter contains an

equality match for userName and an equality match for userPassword and no

attribute information is requested.

The DSA also implements the following special behaviour when ViewDS Access

Control applies:

• A value can only be added, deleted or replaced (deleted and added in the same

operation) by the user whose DN is that of the entry containing the value.

• The whole attribute can only be added, deleted or replaced by a user with admin or

superuser access.

Under X.500 Basic Access Control, the above behaviour is controlled by the access

control applied to the attribute.

passwordModifyTimestamp

This attribute records the time of the last update to the userPassword attribute in the

same entry.

passwordModifyTimestamp ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

 EQUALITY MATCHING RULE generalizedTimeMatch

 ORDERING MATCHING RULE generalizedTimeOrderingMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID {vf 18 15} }

This attribute is used by the DSA in conjunction with passwordExpiryDays to

enforce expiry of user passwords.

passwordExpiryDays

This attribute is an integer that specifies the number of days until the last update to a

userPassword value expires for a user. (The time of the last update is recorded by

passwordModifyTimestamp.)

passwordExpiryDays ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 18 16} }

The attribute is only permitted in the root entry. If it does not exist then passwords do

not expire. The expiry time can be changed at any time, and the new value takes

effect immediately.

Password expiry is checked at bind time for each user. If the user’s password has

expired, their access rights are reduced to the access rights granted to anonymous

binds (except the user can modify their password). Normal access rights are restored

when the user modifies their password – a rebind is not required.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 117

Directory clients can read this attribute from the root entry and read

passwordModifyTimestamp from the user’s entry (subject to access controls) to

determine when password expiry is imminent.

passwordEncryption

This attribute controls whether password values are returned by the DSA, and if so,

how the returned values are encrypted.

passwordEncryption ATTRIBUTE ::= {

 WITH SYNTAX PasswordEncryption

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 18 17} }

PasswordEncryption ::= ENUMERATED {

 noReturn (0),

 cryptEncryption (1),

 shaEncryption (2),

 sha1Encryption (3),

 untaggedCryptHash (4),

 untaggedSHAHash (5),

 untaggedSHA1Hash (6),

 md5Hash (7),

 untaggedMD5Hash (8),

 untaggedSSHA (9),

 taggedSSHA (10) }

The attribute is only permitted in the root entry. If it is absent or set to noReturn,

passwords are not returned regardless of access control settings. Any other setting

allows the userPassword attribute to be returned subject to the access controls in

the directory.

The actual value returned will be a hashed value of the password, using the

appropriate hashing algorithm defined by the value of the passwordEncryption

attribute. The untagged versions return the hashed value of the password; other forms

place a tag in the front of the value to indicate the hashing algorithm used.

dsaCollaborators

This multi-valued attribute must be present in the root entry of a DSA before it can

initiate binds to, or accept binds from, other DSAs. It holds the mutual credentials

needed for the DSA to initiate and accept binds, and other information relevant to the

other DSAs that the DSA communicates with.

NOTE: Note that associations to other DSAs may be kept up for long periods – changes to

dsaCollaborators are ignored in relation to existing associations.

The DSA reads dsaCollaborators when it starts up. Therefore, restart the DSA for

a change to this attribute to take effect.

dsaCollaborators ATTRIBUTE ::= {

 WITH SYNTAX DSACollaborator

 EQUALITY MATCHING RULE dsaCollaboratorMatch

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID vf 12 0 }

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

118 Chapter 6: Managing security

DSACollaborator ::= SET {

 dsa-name [0] Name,

 password [1] OCTET STRING OPTIONAL,

 mypassword [2] OCTET STRING OPTIONAL,

 information [3] DSAInformation DEFAULT {},

 privilege [4] Privilege OPTIONAL

 snmp-url [5] OCTET STRING (SIZE (0..255)) OPTIONAL,

 certificate [6] SEQUENCE OF Certificate OPTIONAL,

 myName [7] DistinguishedName OPTIONAL,

 protectPasswords [8] OCTET STRING (SIZE (16)) OPTIONAL }

DSAInformation ::= BIT STRING {

 inLocalScope (0),

 notExtensible (1),

 bACOriginatorName (2),

 bACBindName (3),

 vf40Compatible (4) -- This option has been deprecated.

 strongAuthNotSupported (5)

 dontUseProxyAuthorization (6) }

The fields are described below.

dsa-name Holds the DN of another DSA that this DSA can bind to or accept

binds from.

password Holds the password that another DSA must use when binding to

this DSA. It must be present as the DSA cannot be configured to

accept anonymous DSP binds.

mypassword Holds the password that this DSA uses to bind to another DSA. If

absent, this DSA does not use a password. If Access Proxy is

implemented, the password for the identity that Access Proxy

should use for simple authentication with an End-User Certificate

Repository Service (EUCRS).

information Holds information relating to another DSA. Defined values are as

follows:

• inLocalScope – the DSA is considered within the ‘local

scope’ for operations that set the localScope service control.

• notExtensible – the DSA does not implement the critical

extensions technical corrigendum to X.500 (1988) (as is the

case with QUIPU DSAs).

• bACOriginatorName – the DSA is trusted to authenticate its

DUAs so that the originatorName supplied in the chaining

arguments can be used as the authenticated identity for

access control purposes.

• bACBindName – ignored if bACOriginatorName is set. If

bACBindName is set, the DSA’s own bind name is used as

the authenticated identity for access control; if not set, the

user is treated as unauthenticated.

• vf40Compatible – this option has been deprecated

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 119

• strongAuthNotSupported – the peer DSA does not

support strong authentication. User/password authentication

should be used..

• dontUseProxyAuthorization – Indicates that the Proxied

Authorization LDAP Control will not be used when chaining
operations to the DSA identified by the dsaCollaborators

attribute using LDAP. See LDAP Controls in Chapter 3 for

more details about this LDAP Control.

privilege Specifies the privilege given to users invoking chained operations
through another DSA. If omitted, it defaults to read privilege.

snmp-url Specifies the URL of the DSA identified by the dsaCollaborators

attribute. This URL is used to construct SNMP MIB Objects when

ViewDS is recording interactions with peer DSAs.

certificate A set of certificates holding the public key(s) specified by
dsaCollaborators that the DSA should authenticate with. Any

strong authentication attempt over DSP or DISP with a token that

can be verified by a certificate in this field will be accepted.

Otherwise, normal strong authentication processing is used.

myName If Access Proxy is implemented, the DN for the identity that

Access Proxy should use for simple authentication with an End-

User Certificate Repository Service (EUCRS).

protectPasswords Indicates that passwords in replication protocol messages
exchanged with the DSA identified by the dsaCollaborators

attribute will be protected with the AES-128 key that is supplied

as the field value. This feature is only supported when both peers

are ViewDS 7.4 (or later) servers and it is essential that each

peer be configured with the same AES-128 key. If this feature is

not used, passwords will be replicated in clear text.

NOTE: The passwords in dsaCollaborators values are encrypted in dumps, update logs

and sdua output. The whole dsaCollaborators value is encrypted in storage.

Example

The following Stream DUA script adds a new DSA to a DSA’s list of known DSAs. The

password 123456 is used by NewDSA to bind to the DSA, and ABCDEF by the DSA

when binding to NewDSA.

modify

 add values dsaCollaborators {

 dsa-name rdnSequence :

{ country "AU" / organizationName "NewCorp" /

commonName "NewDSA" },

 password "123456",

 mypassword "ABCDEF" }

NOTE: Although the passwords are of type OCTET STRING, Stream DUA accepts values

entered as normal strings.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

120 Chapter 6: Managing security

Simple Authentication and Security Layer (SASL)

LDAP supports Simple Authentication and Security Layer (SASL) mechanisms

for authentication of users accessing the directory. ViewDS supports two SASL

mechanisms for authenticating user agents:

• DIGEST-MD5

• EXTERNAL

• GSS-API (Kerberos)

The security layers defined for the DIGEST-MD5 mechanism are not supported. The

use of these SASL mechanisms in LDAP is defined by RFC2829 Authentication

Methods for LDAP.

DIGEST-MD5

The SASL DIGEST-MD5 mechanism is defined in RFC2831 Using Digest

Authentication as a SASL Mechanism.

There are two configuration options which can be used to modify the behaviour of the

DSA when a user is authenticating using the DIGEST-MD5 authentication

mechanism:

• saslrealm is used to identify a value for the realm in the SASL interaction. The

default value for this configuration option in ViewDS is ViewDS. It can be changed

to any ASCII string.

• saslusername is used to identify an attribute which may be used to map the user

name in the SASL credentials into a DN. ViewDS requires an authentication identity

and authorization identify to be DNs. However, SASL uses arbitrary string identifiers

to identify the user to be authenticated. ViewDS addresses this conflict by conducting

a search for the SASL user name as a value of an attribute, where the type of the

attribute is determined by this configuration option. The default attribute type used

in this search is the userName attribute.

ViewDS also supports chaining of SASL DIGEST-MD5 authentication requests to

other ViewDS DSAs that it trusts. This is done using a proprietary matching rule:

saslDigestMD5Match.

EXTERNAL

The SASL EXTERNAL mechanism is defined in RFC2829 Authentication Methods

for LDAP.

This mechanism requests the DSA to determine the authentication identity from an

underlying security layer such as SSL/TLS. ViewDS supports this SASL mechanism

when the LDAP startTLS extended operation has been used to establish a secure

TLS session on the LDAP connection. The authentication identity is determined from

the user certificate, if any, that was provided during the TLS session establishment

negotiations between the server and client. This certificate is validated using the

same procedures used for strong authentication in DAP, and the authentication

level (for Basic Access Control purposes) is set to strong if the certificate is

successfully validated.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 121

GSS-API (Kerberos)

The GSS (Generic Security Service) API (see RFC2222) provides a common interface

for accessing different security services, including Kerberos (see RFC1510 and

RFC1964).

Service Principle Name

When the DSA starts up under Windows it creates a Service Principal Name (SPN),

which provides the ‘Kerberos principal name’ required by LDAP.

The DSA stores the SPN in Active Directory below the account object for the ViewDS

service. For a LocalSystem account, the account object will be the computer object for

the host of the ViewDS service.

A single host can have multiple DSAs installed provided they share the same account.

However, if one DSA shuts down, its SPN will unregister and Kerberos authentication

will fail.

The SPNs can be managed using setspn.exe in Windows Support Tools.

Implementing

To enable ViewDS to authenticate Kerberos identities:

1. Perform the appropriate task below.

Platform Task

Solaris Grant the ViewDS DSA read-access to /etc/krb5/krb5.keytab

Linux Grant the ViewDS DSA read-access to /etc/krb5.keytab

Windows No task required.

2. Set the following configuration-file parameters as required (see page 46):

• gssService

• gssName

• gssrealm

• gssUserName

Access control

This section describes the following:

• Access control schemes

• Basic Access Control

• ViewDS Access Control

Access control schemes

After a user has been authenticated, access to directory information is controlled by

the user’s access privileges. ViewDS supports three access control schemes:

• ViewDS Access Control – a ViewDS-specific access control scheme that predates

X.500 (1993) access control and is very simple to administer. It makes use of the

ViewDS-specific privilege attribute stored in each user’s entry.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

122 Chapter 6: Managing security

• Basic Access Control – the X.500 (1993) standard access control scheme. This

scheme makes use of the three operational attributes prescriptiveACI,

entryACI and subentryACI which hold access control information and are

stored in subentries or entries.

• Simplified Access Control – this is a subset of Basic Access Control also described

in X.500 (1993). It differs only in that entryACI and access control inner areas are

not used and ignored if present.

• XACML Based Access Control – this allows fine-grained access control that

conforms to the XACML Version 3.0 standard. For information about operational

attributes relating to this access control scheme, see the ViewDS Access Sentinel

Installation and Reference Guide.

The access control scheme used in any particular area of the directory is specified by

the accessControlScheme attribute described below.

accessControlScheme

This operational attribute defines the access control scheme within an access control

specific area. It is defined as:

accessControlScheme ATTRIBUTE ::= {

 WITH SYNTAX OBJECT IDENTIFIER

 EQUALITY MATCHING RULE objectIdentifierMatch

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {ds 24 1} }

If this attribute is absent or there is no subentry to define an access control specific

area, the access control scheme used is ViewDS Access Control (the default access

control scheme). Otherwise, the attribute must hold one of two object identifier values:

• basicAccessControlScheme with object identifier {ds 28 1}

• simplifiedAccessControlScheme with object identifier {ds 28 2}

The symbolic names are understood by Stream DUA.

The accessControlScheme attribute can also be stored in the root entry. It then

defines the access control scheme for non-entry DSA-specific entries that are

subordinate to the root and do not have a copy of the real entry’s access control

information.

Basic Access Control

An administrative point configured for Basic Access Control has an access control

subentry. It contains operational attributes that define the access controls for the

entries within the access control area.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 123

Figure 4: Administrative points and areas

With the Basic Access Control scheme, there are two kinds of access control area,

specific and inner. A specific area might contain one or more inner areas. The scope

of the access controls in a specific area ends at the administrative point of another

specific area.

An entry is declared an inner administrative point by setting its administrativeRole

attribute to accessControlInnerArea. Its subentry declares the access controls

for the entries within the inner area.

Access to a subentry’s entire subtree is denied for all users except the super-

administrator. To grant access to other users in the subtree, the prescriptiveACI

operational attribute should be added to the subentry, or the subEntry operational

attribute added to the administrative point. Additionally, or alternatively, the entryACI

operational attribute can be added to individual entries. These operational attributes

are outlined below. (Their semantics are complex – for more information see X.501

(1993) clause 16.)

Operational attributes

The operational attributes for Basic Access Control are described below.

prescriptiveACI

This operational attribute is held in an access control subentry. It defines the access

controls that apply within the subtree controlled by the subentry.

prescriptiveACI ATTRIBUTE ::= {

 WITH SYNTAX ACIItem

 EQUALITY MATCHING RULE directoryStringFirstComponentMatch

 USAGE directoryOperation

 ID {ds 24 4} }

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

124 Chapter 6: Managing security

The syntax of ACIItem is complex – for details see X.501 (1993) clause 16.4.

entryACI

This operational attribute is held in an entry and defines the access controls that apply

to the entry or to its attribute types and values.

entryACI ATTRIBUTE ::= {

 WITH SYNTAX ACIItem

 EQUALITY MATCHING RULE directoryStringFirstComponentMatch

 USAGE directoryOperation

 ID {ds 24 5} }

subentryACI

This operational attribute is held in an administrative point entry. It defines the access

controls that apply to immediately subordinate subentries.

subentryACI ATTRIBUTE ::= {

 WITH SYNTAX ACIItem

 EQUALITY MATCHING RULE directoryStringFirstComponentMatch

 USAGE directoryOperation

 ID {ds 24 6} }

userGroups

X.500 Basic Access Control allows privileges associated with an ACIItem to be

assigned to a group of users listed in an entry of object class groupOfNames or

groupOfUniqueNames. The userGroups operational attribute extends this

functionality by allowing other object classes to fulfil this role.

The userGroups operational attribute should only be used in an access control

administrative point. Each value of the userGroups operational attribute identifies an

object class and one of its attributes to define a group of users. The attribute types

identified should have the syntax DistinguishedName.

The userGroups operational attribute is defined as follows:

userGroups ATTRIBUTE ::= {

 WITH SYNTAX UserGroup

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE dSAOperation

 ID id-adacel-oa-userGroups

}

UserGroup ::= SEQUENCE {

 objectClass OBJECT-CLASS.&id,

 attributeType ATTRIBUTE.&id

}

Role-based access control

ViewDS extends the functionality of the X.500 Basic Access Controls to provide role-

based access control. The userFilter extends the userClasses component of

ACIItem and its ASN.1 type is a DAP filter. When the filter is applied to a user’s entry

and evaluates to true, the user is added to userClasses.

A role-based access control can be time dependent – for example, a user might be

granted access according to the current time and day the of the week.

The definition of the userClasses component is as follows.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 125

UserClasses ::= SEQUENCE {

 allUsers [0] NULL OPTIONAL,

 thisEntry [1] NULL OPTIONAL,

 name [2] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,

 userGroup [3] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,

 -- dn component must be the name of an

 -- entry of GroupOfUniqueNames

 subtree [4] SET SIZE (1..MAX) OF SubtreeSpecification OPTIONAL,

 superiorOfThisEntry [PRIVATE 0] NULL OPTIONAL,

 userFilter [PRIVATE 1] Filter OPTIONAL

}

The Filter type is the same as the filter in the argument to a search request:

Filter ::= CHOICE {

 item [0] FilterItem,

 and [1] SET OF Filter,

 or [2] SET OF Filter,

 not [3] Filter

}

FilterItem ::= CHOICE {

 equality [0] AttributeValueAssertion,

 substrings [1] SEQUENCE {

 type ATTRIBUTE.&id({SupportedAttributes}),

 strings SEQUENCE OF CHOICE {

 initial [0] ATTRIBUTE.&Type

 ({SupportedAttributes}{@substrings.type}),

 any [1] ATTRIBUTE.&Type

 ({SupportedAttributes}{@substrings.type}),

 final [2] ATTRIBUTE.&Type

 ({SupportedAttributes}{@substrings.type}),

 control Attribute

 },

 assertedContexts [PRIVATE 0] AssertedContexts OPTIONAL

 },

 greaterOrEqual [2] AttributeValueAssertion,

 lessOrEqual [3] AttributeValueAssertion,

 present [4] AttributeType,

 approximateMatch [5] AttributeValueAssertion,

 extensibleMatch [6] MatchingRuleAssertion,

 contextPresent [7] AttributeTypeAssertion

}

MatchingRuleAssertion ::= SEQUENCE {

 matchingRule [1] SET SIZE (1..MAX) OF MATCHING-RULE.&id,

 type [2] AttributeType OPTIONAL,

 matchValue [3] MATCHING-RULE.&AssertionType

 (CONSTRAINED BY {

 -- matchValue must be a value of type specified

 -- by the &AssertionType field of one of the

 -- MATCHING-RULE information objects identified

 -- by matchingRule –

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

126 Chapter 6: Managing security

 }),

 dnAttributes [4] BOOLEAN DEFAULT FALSE,

 assertedContexts [PRIVATE 0] AssertedContexts OPTIONAL

}

NOTE: The Time and date attributes described on page 82 are useful when declaring time-

based refinements.

ViewDS Access Control

The ViewDS Access Control scheme uses two attributes: privilege and

anonymousPrivilege. Each is described below.

privilege

This attribute controls the user’s access privileges. It consists of an enumerated

integer and an optional DN. If the attribute is absent from a user’s entry, the user is

given read access.

privilege ATTRIBUTE ::= {

 WITH SYNTAX Privilege

 EQUALITY MATCHING RULE integerFirstComponentMatch

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 24 0} }

Privilege ::= SEQUENCE {

 accessLevel AccessLevel,

 subtree DistinguishedName OPTIONAL,

 assignUpdaters BOOLEAN DEFAULT FALSE }

AccessLevel ::= ENUMERATED {

none(0), read(1), update(2), admin(3), superuser(4),

authenticationOnly(5), requestor(6) }

The fields are described below.

accessLevel The user’s access level:

• none – the user has no access to the directory other than the

ability to invoke a GetMyDN search.

• read – the user can read all attributes (except

userPassword) from any entry in the directory, and can

modify their own userPassword.

• update – the user has read access plus permission to modify

any attributes (except userPassword and privilege) in

any entry within a designated subtree.

• admin – the user has update access plus permission to

modify the userPassword attribute in entries within the

designated subtree.

• superuser – the user has admin access to the whole

directory and can modify the privilege attribute.

• authenticationOnly – the user has no access to the

directory other than to submit bind requests.

• requestor – the user has permission to submit update

requests as part of the approval process (see the Technical

Reference Guide: User Interfaces).

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 127

subtree The DN of the subtree that a user with an accessLevel of

update or admin access can access. The user can add, delete,

modify or rename entries within that subtree, and move entries

within and into (but not out of) that subtree. If absent, the

designated subtree is the entire DIT. If invalid, the user’s access

level reverts to read access.

assignUpdaters This flag applies to users with an accessLevel of admin. It

permits them to assign update privilege to users within the

scope of their subtree field, provided the subtree scope of the

assigned update privilege is restricted to the subtree of the

admin user.

Even though the DSA permits read or modify access to an attribute, Access Presence

may restrict access. The attributes that Access Presence can read or modify are

governed by the attributePresentation and objectClassPresentation

attributes as well as the DSA’s enforcement of privilege.

anonymousPrivilege

This multi-valued attribute must be present in the root entry before a DSA will accept

bind requests with anonymous, or inadequate credentials, from another DSA or a

DUA (including Access Presence using the GetMyDN procedure).

anonymousPrivilege ATTRIBUTE ::= {

 WITH SYNTAX AnonymousPrivilege

 EQUALITY MATCHING RULE anonymousPrivilegeMatch

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID {vf 12 1}

}

AnonymousPrivilege ::= SET {

 protocol [0] BIT STRING {

 dapProtocol(0), dapAdmProtocol(1),

 dspProtocol(2), dopProtocol(3),

 dispProtocol(4), ebRSProtocol(5),

 xacmlProtocol(6), smplProtocol(7) },

 credentialType [1] BIT STRING {

 noCredentials(0), noNameNoPasswd(1),

 noNameZeroPass(2), nameNoPasswd(3),

 proxyDefault(4), saslGSSAPI(5) },

 privilege [2] Privilege

}

The fields are described below.

protocol Specifies the protocols that allow anonymous connections:

• dapProtocol (Directory Access Protocol)

• dapAdmProtocol (DAP Admin Protocol

dapAdministrationAC)

• dspProtocol (Directory System Protocol)

• dopProtocol (Directory Operational Binding Protocol – not

currently supported)

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

128 Chapter 6: Managing security

• dispProtocol (Directory Information Shadowing Protocol)

• ebRSProtocol (ebXML Registry Service Protocol)

• xacmlProtocol (eXtensible Access Control Language

Authorization Request Protocol)

• spmlProtocol (Service Provisioning Markup Language

Protocol)

credentialType Specifies the anonymous credentials that are supported for a

given protocol:

• noCredentials – the credentials in the Directory Bind

argument are absent.

• noNameNoPasswd – simple credentials are present, but name

is an empty RDN sequence (the name of the root) and

password is absent.

• noNameZeroPass – simple credentials are present, but name

is an empty RDN sequence and password is an empty string.

• nameNoPasswd – name is present and not an empty RDN

sequence, and password is absent.

• proxyDefault – sets anonymous credentials as the default

credential type for anonymous proxied users. If not set, no

privileges will be given to the proxied user.

• saslGSSAPI – credentials are provided by a SASL

authentication mechanism if the identity authenticates through

the GSS-API SASL mechanism, but ViewDS cannot map

them to an entry in the directory.

privilege Specifies the privileges given to users who bind or chain to the

DSA using the indicated protocol and credentials.

An anonymousPrivilege attribute is essential for support of the GetMyDN

procedure used by Access Presence.

The following Stream DUA script enables the GetMyDN procedure (note that the

Stream DUA must run with the -d option to modify the root entry):

modify

 add values anonymousPrivilege {

 protocol { dapProtocol, dapAdmProtocol },

 credentialType { noCredentials },

 privilege { accessLevel none }

};

Values of anonymousPrivilege with dspProtocol defined are used for

interworking with other DSAs that do not provide bind credentials. The following

Stream DUA script allows other anonymous DSAs to read entries:

modify

 add values anonymousPrivilege {

 protocol { dspProtocol },

 credentialType { noCredentials, noNameNoPasswd,

 noNameZeroPass, nameNoPasswd },

 privilege { accessLevel read }

};

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 129

LDAP password management

Access to the directory information held in the DSA requires a DUA, or another DSA,

to provide their credentials, which are then used to authenticate the user. The security

behind the LDAP simple-authentication model, which is the most widely used

authentication mechanism, rests on how difficult the user’s password is to crack.

Applying an LDAP Password Policy allows the directory administrator to define a set

of rules that will enhance the security of the user’s password, and ultimately that of the

directory information in the DSA.

The directory allows the LDAP Password Policy to vary with the position of an entry in

the Directory Information Tree (DIT). The region of the DIT subject to a particular

password policy is known as a password policy administrative area.

Password Policy rules are created by configuring various operational attributes and

object classes defined by the Internet Drafts, draft-behera-ldap-password-policy-05

and draft-behera-ldap-password-policy-10 (for pwdMaxIdle and pwdLastSuccess

only). The configuration of these operational attributes is discussed later in this

section.

The ViewDS DSA supports this password management feature for LDAP operations.

In addition, some extensions have been made to DAP to allow password policy

requests and responses for bind, compare and modify operations so that password

policy to be enforced though Access Presence.

Password usage policy

The LDAP Password Policy can be enforced for many different types of password

usage. The various types of password policies which may be enforced are described

in this section.

Password guessing limit

The purpose of this password policy is to minimize the threat of password guessing

attacks. Enforcing a password guessing limit policy causes consecutive failed

authentication attempts to be tracked and acted upon when the limit is reached.

This policy consists of five parts:

• A configurable limit of consecutive failed authentication attempts.

• A counter to track the number of consecutive failed authentication attempts.

• A timeframe in which the consecutive failures must occur within before action is

taken.

• The action to be taken when the limit is reached.

• The amount of time that the account is locked (only applicable if account locking is

enabled).

Password expiration

A key factor in ensuring that a password is not compromised is that it is not well

known. If a password is frequently changed, the chances of the user’s account being

broken into are minimized.

The password policy can be configured to cause passwords to expire after a given

amount of time, thus forcing users to change their passwords periodically.

http://tools.ietf.org/html/draft-behera-ldap-password-policy-05
http://tools.ietf.org/html/draft-behera-ldap-password-policy-10

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

130 Chapter 6: Managing security

To make the user aware that they must change their password, one or both of the

following methods may be used:

• The user is sent a warning sometime before their password is due to expire. If the

user fails to heed this warning before the expiration time, the account will be locked.

• The user may bind to the directory a preset number of times after their password

has expired. If the specified limit of grace logins is exceeded, without the password

being changed, the account will be locked.

Password history

The objective of the password expiration model, which states that a password will be

more secure if it is changed frequently, can be rendered useless if a user constantly

reuses old passwords.

By specifying a number of passwords to be remembered, a password value will be

included into the history every time the value changes. Users will then be prevented

from modifying their password to any of these previously used values.

Password minimum age

The password history mechanism may be circumvented if the user changes their

password extremely frequently with the intention of flushing a specific previous

password from the history. To deter users from doing this, a minimum age for

passwords may be specified. This will enforce a time period, which must elapse,

before a user is allowed to change their password.

Password syntax

In order to prevent users from choosing passwords that may be easy to guess, a

password syntax policy can be employed. Currently the ViewDS DSA supports three

mechanisms for this – minimum length enforcement, minimum distance enforcement

and a password quality check.

Minimum length enforcement will ensure that passwords are at least a specific length,

making brute force attacks a lengthy process for an intruder.

Minimum distance enforcement will ensure a minimum degree of change between an

old password and a new one. This feature is a ViewDS-specific extension to the LDAP

password policy standard.

In addition, we have implemented another ViewDS-specific extension to the LDAP

password policy standard to allow a set of pre-defined password quality checks to be

applied. One set of checks is provided, based on the guidelines in the Australian

Government Information Security Manual 2015.

User defined passwords

In some cases, it may be desirable to disallow users from changing or creating their

own password values. This is something that may be set as part of the policy,

although care should be taken to ensure that this is not used in conjunction with

password expiry, since users will be locked out until their password is changed by an

administrator.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 131

Password change after reset

This policy can be used to force the user to change their password after an

administrator has created or changed it. This is especially useful when the

administrator sets passwords to a well-known value, such a person’s date of birth.

Safe modification

A potential security risk will arise if a client connects to a directory, and leaves the

connection open for an extended period of time. This potentially allows an intruder to

make modifications to the user’s password whilst the computer is unattended.

This policy requires the user to provide their old password before a password can be

changed.

Inactive account lockout

This policy can be used to lock an account automatically after it has been inactive for

a specified period of time. Useful for ensuring that the accounts of staff who have left

an organisation cannot be exploited.

Password Policy LDAP Control

The LDAP Password Policy uses an LDAP Control to convey password policy

information from the DSA to the DUA.

An LDAP Control only applies to operations carried out using the LDAPv3 protocol. In

order for useful information to be reported correctly, the DUA being used must be

using LDAP Version 3 and include the passwordPolicyRequest control in their

LDAP requests.

passwordPolicyRequest

This LDAP Control must be included into LDAP requests by DUAs wishing to receive

passwordPolicyResponse information from the ViewDS DSA.

The controlType for this control is 1.3.6.1.4.1.42.2.27.8.5.1. The criticality must

always be FALSE. This control does not have a controlValue.

passwordPolicyResponse

This LDAP Control is included in responses to DUAs which have acknowledged that

they are willing to receive it by including the passwordPolicyRequest control in

their requests.

This LDAP Control is the only mechanism available to convey password policy

decisions, made by the DSA, back to the DUA.

The controlType for this control is 1.3.6.1.4.1.42.2.27.8.5.1. The criticality must be

set to FALSE. The controlValue for this control is an OCTET STRING whose value is

the BER encoding of the following structure:

PasswordPolicyResponseValue ::= SEQUENCE {

 warning [0] CHOICE {

 timeBeforeExpiration [0] INTEGER (0 .. maxInt),

 graceLoginsRemaining [1] INTEGER (0 .. maxInt)

 } OPTIONAL,

 error [1] ENUMERATED {

 passwordExpired (0),

 accountLocked (1),

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

132 Chapter 6: Managing security

 changeAfterReset (2),

 passwordModNotAllowed (3),

 mustSupplyOldPassword (4),

 invalidPasswordSyntax (5),

 passwordTooShort (6),

 passwordTooYoung (7),

 passwordInHistory (8)

 } OPTIONAL

}

Password policy administrative area

The region where a password policy applies is called a password policy administrative

area. It encompasses a complete subtree of a DIT, excluding subordinate subtrees set

up as independent password policy administrative areas.

The entry at the top of the subtree is the password policy administrative point. This

entry holds a special operational attribute, administrativeRole, with the value

passwordPolicyArea. The object identifier for this administrative role value is

defined as:

passwordPolicyArea OBJECT IDENTIFIER ::=

 { 1 2 36 79672281 1 23 0 }

The actual password policy specification is stored in a subentry (a special subordinate

entry) of this entry. The specifications are stored as operational attributes of the

subentry. The operational attributes define the set of rules that make up the password

policy. They can be modified or created using the Stream DUA by a user with

sufficient access control privileges.

The password policy subentry requires a subtreeSpecification value to define

which part of the subtree it applies to. The subtreeSpecification value should

specify the entire subtree under the administrative point (i.e. all optional components

should be absent). Only one password policy subentry can be defined in a password

policy administrative area.

Password policy object class

Creating a password policy administrative point, and placing password policy

operational attributes in the password policy subentry, sets up a password policy

administrative area. The password policy subentry must contain the pwdPolicy

object class.

pwdPolicy

As the definition below shows, this object class can be used to create a password

policy with one or many of the password policy operational attributes. However, in

order for a password policy entry to be valid it must contain the pwdAttribute

operational attribute.

pwdPolicy OBJECT-CLASS ::= {

 SUBCLASS OF { top }

 KIND auxiliary

 MUST CONTAIN { pwdAttribute }

 MAY CONTAIN { pwdMinAge | pwdMaxAge | pwdInHistory |

 pwdCheckSyntax | pwdMinLength |

 pwdExpireWarning | pwdGraceLoginLimit |

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 133

 pwdLockout | pwdLockoutDuration | pwdMaxFailure |

 pwdFailureCountInterval | pwdMustChange |

 pwdAllowUserChange | pwdSafeModify | pwdMaxIdle }

 ID id-sun-sc-pwdPolicy

 }

Password policy operational attributes

The following operational attributes can be included within the password policy

subentry to create the final password policy. At the very least, pwdAttribute must

be included within the password policy subentry.

pwdAttribute

This operational attribute contains all of the attributes that the password policy will be

applied to. This operational attribute must be present in all password policy

subentries.

pwdAttribute ATTRIBUTE ::= {

 WITH SYNTAX OBJECT IDENTIFIER

 EQUALITY MATCHING RULE objectIdentifierMatch

 ID id-sun-at-pwdAttribute}

pwdMinAge

This operational attribute holds the number of seconds that must elapse from the time

a password is created until it can be modified. If this attribute is not present a value of

0 is assumed.

pwdMinAge ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdMinAge}

pwdMaxAge

This operational attribute holds the number of seconds after which the password will

expire. If this attribute is not present or has a value of 0, the password will never

expire.

pwdMaxAge ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdMaxAge}

pwdInHistory

This operational attribute specifies the number of passwords that will be stored in

history. If this attribute is not present, or has a value of 0, passwords will not be stored

in history.

pwdInHistory ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdInHistory}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

134 Chapter 6: Managing security

pwdCheckSyntax

This operational attribute indicates the level of syntax checking performed on password

values that are being added or modified. This attribute can hold one of three values:

• 0 – indicates that syntax checking will not be performed. This is equivalent to the

attribute not being present.

• 1 – indicates that the DSA will check the syntax of the password value if it can

process the password’s original value correctly (for example, it is a clear-text or

encrypted value). Passwords that the DSA cannot process will be accepted.

• 2 – indicates that syntax checking must be completed satisfactorily for the

password to be accepted. If the password’s syntax cannot be accurately processed

by the DSA (for example, hashed value) then the password will not be accepted.

It is defined as follows:

pwdCheckSyntax ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdCheckSyntax}

Note. If syntax checking is enabled, then password syntax checks can be

implemented using the pwdMinLength (below) and ViewDS-specific operational

attributes viewDSPasswordQuality and viewDSPasswordDistance. See

viewDSPasswordQuality and Sequential passwords cannot be used

viewDSPasswordDistance on page 140 for further details.

pwdMinLength

This operational attribute holds the minimum length (in characters) of a password.

This part of the policy is only used when pwdCheckSyntax is present and not equal

to zero. If this attribute is not present or has a value of 0, the length of the password

will not be checked.

pwdMinLength ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdMinLength}

pwdExpireWarning

This operational attribute holds the maximum number of seconds before a password

is due to expire that an expiration warning will be sent to the user. If this attribute is

not present or has a value of 0, no warnings will be sent.

pwdExpireWarning ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdExpireWarning}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 135

pwdGraceLoginLimit

This operational attribute holds the number of times an expired password can be used

to authenticate. If this attribute is not present, or has a value of 0, the user will not be

able to login after the password has expired.

pwdGraceLoginLimit ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdGraceLoginLimit}

pwdLockout

This operational attribute indicates whether a password will be able to be used after

a number of consecutive bind failures. The maximum number of consecutive failed

bind attempts is specified in pwdMaxFailure. If this attribute is not present, or has

a value of FALSE, the entry will not be locked after a number of consecutive failed

bind attempts.

pwdLockout ATTRIBUTE ::= {

 WITH SYNTAX BOOLEAN

 EQUALITY MATCHING RULE booleanMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdLockout}

pwdLockoutDuration

This operational attribute holds the number of seconds that a password cannot be

used due to too many consecutive failed bind attempts (i.e. pwdLockout attribute

value is TRUE). If this attribute is not present, or has a value of 0, the password cannot

be used to authenticate until pwdLockout is reset by the administrator.

pwdLockoutDuration ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdLockoutDuration

}

pwdMaxFailure

This operational attribute holds the number of consecutive failed authentication

attempts after which a password may not be used to authenticate. If this attribute is

not present, or has a value of 0, this policy is not checked and the value of

pwdLockout will be ignored.

pwdMaxFailure ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdMaxFailure

}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

136 Chapter 6: Managing security

pwdFailureCountInterval

This operational attribute holds the number of seconds after which password failures

are purged from the failure counter. If this attribute is not present, or has a value of 0,

the password failure counter will only be reset by a successful bind.

pwdFailureCountInterval ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdFailureCountInterval

}

pwdMustChange

This operational attribute indicates whether a password must be changed after the

password has been reset by an administrator. If this attribute is not present a value of

FALSE will be assumed.

pwdMustChange ATTRIBUTE ::= {

 WITH SYNTAX BOOLEAN

 EQUALITY MATCHING RULE booleanMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdMustChange

}

pwdAllowUserChange

This operational attribute indicates whether a user is allowed to change their own

password. This operational attribute only has an effect when the user is authorized by

access controls to change their password and we would like the password policy to

disallow this privilege. If this attribute is not present, a value of TRUE will be assumed.

pwdAllowUserChange ATTRIBUTE ::= {

 WITH SYNTAX BOOLEAN

 EQUALITY MATCHING RULE booleanMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdAllowUserChange

}

pwdSafeModify

This operational attribute specifies whether a user must provide their current

password before it can be modified. If this attribute is not present a value of FALSE will

be assumed.

pwdSafeModify ATTRIBUTE ::= {

 WITH SYNTAX BOOLEAN

 EQUALITY MATCHING RULE booleanMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdSafeModify

}

pwdMaxIdle

This operational attribute specifies the number of seconds an account may remain

unused before it becomes locked. If this attribute is not set or is 0, no check is

performed.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 137

pwdMaxIdle ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-sun-at-pwdMaxIdle

}

Password policy state information

To maintain adequate information regarding the state of each password, information is

stored within the user entries in operational attributes. To maintain state for multiple

attributes within a single entry, the password policy utilizes attribute options.

Password policy state attribute option

Most of the operational attributes used to maintain state information must have an

option to specify which attribute, specified in pwdAttribute, it applies to. The

password policy option is described as the following:

pwd-<passwordAttribute>

where passwordAttribute is a string following the OID Syntax.

For example, the option for the userPassword attribute with the pwdChangedTime

operational attribute would be:

pwdChangedTime;pwd-userPassword: 19790322120000Z

This attribute option follows subtyping semantics. If a client requests a password

policy state attribute to be returned in a search operation, and does not specify an

option, all subtypes of that policy state attribute will be returned.

Password policy state operational attributes

The operational attributes used by the password policy to maintain state for each entry

are described here. All of these operational attributes use attribute options except for

the pwdPolicySubentry.

pwdChangedTime

This operational attribute specifies the last time that the entry’s password was

changed. If this attribute does not exist, the password will never expire.

pwdChangedTime ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

 EQUALITY MATCHING RULE generalizedTimeMatch

 ORDERING MATCHING RULE generalizedTimeOrderingMatch

 USAGE directoryOperation

 ID id-sun-at-pwdChangedTime

}

pwdAccountLockedTime

This operational attribute holds the time that the user’s account became locked. If this

value is 0000010100Z (the lowest syntactically correct GeneralizedTime), the

account has been locked permanently and only the administrator can unlock the

password.

pwdAccountLockedTime ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

138 Chapter 6: Managing security

 EQUALITY MATCHING RULE generalizedTimeMatch

 ORDERING MATCHING RULE generalizedTimeOrderingMatch

 USAGE directoryOperation

 ID id-sun-at-pwdAccountLockedTime

}

pwdExpirationWarned

This operational attribute contains the time that the user was first sent a password

expiration warning. The password will be due to expire at the time indicated by the

sum of this time and the number of seconds specified by the pwdExpireWarning

attribute.

pwdExpirationWarned ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

 EQUALITY MATCHING RULE generalizedTimeMatch

 ORDERING MATCHING RULE generalizedTimeOrderingMatch

 USAGE directoryOperation

 ID id-sun-at-pwdExpirationWarned

}

pwdFailureTime

This operational attribute holds the timestamps of the consecutive authentication

failures.

pwdFailureTime ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

 EQUALITY MATCHING RULE generalizedTimeMatch

 ORDERING MATCHING RULE generalizedTimeOrderingMatch

 USAGE directoryOperation

 ID id-sun-at-pwdFailureTime

}

pwdHistory

This operational attribute holds the history of previously used passwords. Values of

this attribute are transmitted in string format as given by the following ABNF:

pwdHistory = time ‘#’ syntaxOID ‘#’ length ‘#’ data

time = <generalizedTimeString as specified in 6.14 of

RFC2252>

syntaxOID = numericoid ; The string representation of the

 ; dotted-decimal OID that defines the

 ; syntax used to store the password.

length = numericstring ; the number of octets in data

data = <octets representing the password in the format

 specified by syntaxOID>.

Its definition is:

pwdHistory ATTRIBUTE ::= {

 WITH SYNTAX OCTET STRING

 EQUALITY MATCHING RULE octetStringMatch

 USAGE directoryOperation

 ID id-sun-at-pwdHistory

}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 139

pwdGraceUseTime

This operational attribute holds the timestamps of grace logins used after a password

has expired.

pwdGraceUseTime ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

 EQUALITY MATCHING RULE generalizedTimeMatch

 USAGE directoryOperation

 ID id-sun-at-pwdGraceUseTime

}

pwdReset

This operational attribute indicates whether an administrator has changed the

password. It is used to enforce the change after reset policy indicated by

pwdMustChange attribute.

pwdReset ATTRIBUTE ::= {

 WITH SYNTAX BOOLEAN

 EQUALITY MATCHING RULE booleanMatch

 USAGE directoryOperation

 ID id-sun-at-pwdReset

}

pwdPolicySubentry

This operational attribute holds the DN of the password policy subentry in effect for

this object. This attribute is maintained automatically by the DSA and cannot be

modified by a DUA.

pwdPolicySubentry ATTRIBUTE ::= {

 WITH SYNTAX DistinguishedName

 EQUALITY MATCHING RULE distinguishedNameMatch

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID id-sun-at-pwdPolicySubentry

}

pwdLastSuccess

This operational attribute holds the timestamp of the last successful authentication. It

is used to enforce the maximum account idle time policy indicated by the

pwdMaxIdle attribute.

pwdLastSuccess ATTRIBUTE ::= {

 WITH SYNTAX GeneralizedTime

 EQUALITY MATCHING RULE generalizedTimeMatch

 ORDERING MATCHING RULE generalizedTimeOrderingMatch

 USAGE directoryOperation

 ID id-sun-at-pwdLastSuccess

}

Note. The pwdLastSuccess attribute implemented here differs from that described

in draft-behera-ldap-password-policy-10 in that it is a user modifiable attribute.

http://tools.ietf.org/html/draft-behera-ldap-password-policy-10

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

140 Chapter 6: Managing security

ViewDS-specific password policy operational attributes

viewDSPasswordQuality

This operational attribute has a syntax of object identifier and is multi-valued. It is used

to identify the set of password-quality checks that should be carried out if the

pwdCheckSyntax behaviour is enabled (see pwdCheckSyntax on page 134).

Currently only one set of password-quality checks is defined:

pwdQuality-agism OBJECT IDENTIFIER ::=

{ 1 3 6 1 4 1 21473 5 7 2 1 }

This set is based on guidelines in the Australian Government Information Security

Manual 2015, and imposes the following:

• Passwords must have a minimum of 10 characters and must contain at least one

character from three of the following four character sets:

o Lowercase Unicode characters (such as a – z)

o Uppercase Unicode characters (such as A – Z)

o Numeric characters (0-9)

o Special characters (such as ! @ # $ %, etc.)

• Sequential passwords cannot be used

viewDSPasswordDistance

This operational attribute has an integer syntax and is single-valued. It is used to

determine the degree of change between an old password value and a new password

value based on the sum of the distances between code points of the respective

characters, plus the difference in length of the passwords. It prevents the use of

sequential passwords.

When the pwdQuality-agism mechanism is in use (see above), it defaults to 1,

otherwise it defaults to 0.

Adding a password policy

The standard ViewDS, as supplied on the installation media, does not come pre-

configured with a password policy. Adding, removing or modifying a password policy

can be done at any time using the Stream DUA.

Creating a password policy administrative area

The first step in creating a password policy is to identify which administrative point

should contain the password policy as a subentry.

If this entry does not exist it will need to be created, as illustrated by the following

Stream DUA example:

 insert {

 organizationName "Deltawing"

 / organizationalUnit "Password Policy"

 }

 with {

 objectClass organizationalUnit,

 administrativeRole passwordPolicyArea

 };

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 141

If the entry does exist, but is not currently an administrative point, the following Stream

DUA command will make this entry suitable to house a password policy subentry:

 modify {

 organizationName "Deltawing"

 / organizationalUnit "Deltawing InfoSystems"

 }

 with changes {

 add attribute administrativeRole passwordPolicyArea

 };

If the entry exists and is currently an administrative point for other administrative roles,

the following Stream DUA command will make it suitable to house a password policy

subentry:

 modify {

 organizationName "Deltawing"

 }

 with changes {

 add values administrativeRole passwordPolicyArea

 };

Creating the password policy subentry

Before a password policy subentry is created you must know exactly what policy you

would like to enforce its scope within the DIT.

The following Stream DUA example creates a password policy under the Deltawing

administrative point. This password policy will lock accounts for one day if the user

incorrectly guesses their userPassword value five times.

insert {

 organizationName "Deltawing"

 / commonName "LDAP Password Policy" }

with {

 objectClass subentry pwdPolicy,

 subtreeSpecification { },

 pwdAttribute userPassword,

 pwdMaxFailure 5,

 pwdLockout TRUE,

 pwdLockoutDuration 86400

};

Once this has been done, all entries in the subtree will have their userPassword

attribute subjected to the password policy.

Miscellaneous security topics

This subsection describes the following security topics:

• Secure Sockets Layer (SSL)

• XML digital signature

• Dump and log-file security

• Proxy permissions

• Value hashing

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

142 Chapter 6: Managing security

Secure Sockets Layer (SSL)

ViewDS can protect LDAP access with Secure Sockets Layer (SSL) security. SSL

provides server authentication to the client (for example, DSA to DUA) and data

confidentiality (encryption) for subsequent communication between the client and the

server (including client authentication to the server). Authentication is via X.509

certificates and uses the same DSA certificate described earlier for strong

authentication.

Enabling SSL/TLS requires the server key pair to be set up (see Strong authentication

on page 112).

XML digital signature

ViewDS can protect SAML-based XACML access through XML digital signature

security. XML digital signatures provide server authentication to the client (for

example, PDP to PEP) and data integrity (signing) for communication between the

PEP and the PDP (including PEP authentication).

Authentication is via X.509 certificates and uses the same DSA certificate described

previously for strong authentication.

Enabling XML digital signatures requires the server key pair to be set up (see Strong

authentication on page 112).

ViewDS support for XML digital signatures has been implemented according to the

XML Signature Syntax and Processing Second Edition (2008) specification using the

methods described in Section 5: SAML and XML Signature Syntax and Processing of

the SAML Core Specification 2.0 (2005) with the following variation:

• The KeyInfo element is always included in a signed response and contains

either the X509Certificate or the X509SubjectName.

Creating signed responses

ViewDS always signs responses to signed requests. The dsigsignresponse

configuration parameter allows you to specify whether ViewDS signs responses to

unsigned requests.

The signed response includes either the X509Certificate or the X509SubjectName in

the KeyInfo element for client verification. The dsigx509data configuration option

allows you to specify which of these should be provided.

Verifying signed requests

Processing a signed XACML request involves two steps: the validation of the digital

signature and the authentication of the signer.

The first step verifies message integrity and ensures that the content of the XACML

request has not been changed since it was signed.

The second step allows ViewDS to authenticate the signer and ensure that it is

trusted. The validation of client authentication credentials is completed using the same

process that is described for strong authentication (see Other authentication

requirements on page 114).

Any XACML request that is signed and successfully verified is considered to have an

authentication level of Strong for authorization purposes.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 143

Dump and log-file security

The DSA encrypts values of userPassword when writing them to a dump file (the

output from the Stream DUA dump command) or a log file. This protects the

userPassword values, even from directory administrators, including the super-

administrator.

Values are encrypted using a special 32 character hexadecimal string encoding a 16

byte AES key which can be set using the DSA Controller. If no key string has been

set, the DSA uses a default key.

Loading encrypted data

An encrypted value in a dump or log file has the string prefix ENCRYPTED:. To load

these dump files, or replay logs, the Stream DUA needs the key that was used to

generate the encrypted values.

Unless explicitly overridden, Stream DUA attempts to read the key from the special

password file defined by the configuration-file parameter admpasswd (usually

${VFHOME}/general/deity). Note that this requires Stream DUA to be invoked by

the same user who started the DSA (i.e. the DSA account user). Otherwise – or when

transferring dump or log files between systems in which different keys are used – the

key must be specified explicitly.

The Stream DUA takes a command line option, which sets the key to be used when

uploading:

sdua [-K string]

There is an optional qualifier on the dump command to specify the key when dumping:

dump [name] [with key string];

If string is an empty string, the default key is used.

Changing the key

To improve security, it is advisable to set a key rather than rely on the built-in default

key (which is by definition the same for every ViewDS installation). Set a different key

using the DSA Controller as follows:

dsac setwrite key=[32 character hexadecimal string]

Once a new key has been set, it is necessary to supply the old key to the Stream DUA

when loading data that was dumped or logged using the old key. This is normally only

required when making a transition from one key to another.

When dumping data to supply to another user for modifying and uploading, dump and

with a different key and supply it to the user.

NOTE: The value of the key that has been set using the DSA Controller is NOT displayed by

the dsac display command.

Proxy permissions

The DSA can assign a proxy capability to individual users. The proxy capability allows

a user to indicate, for each operation, the DN of another user whose access rights

should be used when performing the operation. This allows a single entity to act on

behalf of a number of different users without having to constantly bind to the DSA with

each user's credentials.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

144 Chapter 6: Managing security

The capability can be granted by adding a value of the operational attribute

proxyAgent to a user's entry. This attribute defines:

• that the user is permitted to act on behalf of other users; and

• the authentication level to use when making access control decisions using another

user's identity.

To use the proxy capability, a DUA must bind to the directory using the credentials of

the user granted the proxy capability. It can then specify an alternative user's DN in

the requestor field in the CommonArguments of a DAP operation or using the proxy

authorisation control for an LDAP operation.

The DUA can act using its own credentials by sending operations without the

requestor field. It can act using anonymous credentials by sending operations with

the requestor field present and set to an empty sequence of RDNs.

The only ViewDS DUAs that can use the proxy capability are Access Presence and

the Stream DUA.

proxyAgent

This attribute is a single valued operation attribute.

proxyAgent ATTRIBUTE ::= {

 WITH SYNTAX AuthenticationLevel

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID { ads 24 0 } }

Value hashing

ViewDS rigorously protects the userPassword attribute and never reveals its clear-

text value. By default, the userPassword value is protected using a symmetric

encryption scheme. Two-way encryption allows the userPassword value to be

decrypted into clear-text for internal processing.

If you consider two-way encryption of the userPassword inadequate, or if you would

like to protect other attributes, enable value hashing.

After enabling value hashing for an attribute, any new values of the attribute are

stored as hashed values rather than clear text. Converting existing values to hashed

values involves dumping and reloading the directory.

In conjunction with storing hashed values, the value-hashing policy may be configured

to control the format of the values returned by ViewDS for the protected attribute.

Before implementing a value-hashing policy, read and understand the following

precautionary notes. For information on setting up a value-hashing policy, see

attributeTypeExtensions on page 95.

Original value reversion

It is very important to note that once a value has been hashed, it is impossible to

obtain a clear-text value of the stored password. From a security perspective this is an

ideal situation. However, it also means that the original passwords cannot be

replicated or loaded onto another non-ViewDS directory (described below).

Directory replication

If a ViewDS directory replicates data containing a hash-protected attribute to a non-

ViewDS directory, it will not operate as intended.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 6: Managing security 145

When an attribute is hash protected, the actual values are stored as values with

context or in the case of LDAP, attribute options are used. These options or contexts

allow ViewDS to identify whether the value is hashed and with which algorithm. The

following identifiers are used by ViewDS as context values or LDAP attribute options

to specify the hash algorithm used:

• x-hashed-crypt – for the Unix Crypt algorithm

• x-hashed-md5 – for the MD5 algorithm

• x-hashed-sha – for the SHA algorithm

• x-hashed-sha1 – for the SHA1 algorithm

These identifiers begin with the x- prefix to indicate that they are experimental and

ViewDS specific. Since other directories do not understand these identifiers, it is

unclear how they would treat the attributes’ values. However, it is certain that they

would not treat them as hashed values. This would result in failure of bind and query

operations that contain a clear-text value of the attribute.

LDAP Password Policy – syntax checking

The subsection for the pwdCheckSyntax attribute (see page 134) describes how

ViewDS behaves if it cannot process a password’s syntax correctly.

When value hashing is turned on, the clear-text value of a password is no longer

available for ViewDS to analyse. Because the length of the password cannot be

determined from the hashed value, ViewDS cannot check the syntax.

It is recommended that the pwdCheckSyntax value should not be set to 2 when

hashing is on, since this will result in every password value being rejected.

LDAP Password Policy – history

The LDAP Password Policy states that a deleted or removed password should go into

the history list. Since the policy makes no allowances for identifying whether values in

history are hashed, they can be whatever was stored in the directory at the time.

When the history list is checked, all values are treated as the value relating to the

directory’s current hashing policy. Therefore, if you change the hashing policy,

previously used passwords can be reused.

Example

Consider a scenario where MD5 hashing is turned on and the user has a password of

testpass. If the user changes their password to abc, then the history list will contain

the encoded hash, F5rUXGziy5fPECniEgRugQ==.

If MD5 hashing is then turned off and the user changes their password to testpass,

ViewDS will not be able to identify the value in history as relating to the value

provided.

 147

Chapter 7

 Replicating or

distributing data

This chapter provides an overview of X.500 distributed operations, and describes how

to configure the ViewDS Directory System Agent (DSA) with knowledge of other DSAs

to allow distributed operations. That is, to allow a DSA to contact other DSAs to satisfy

a user operation. It also describes how to configure the DSA for replication, so that a

DSA can supply a copy of its data to another DSA or hold a copy of data mastered in

another DSA (in accordance with X.525).

This chapter has the following sections:

• Distributed operations overview

• DSE types

• Access points

• Knowledge attributes

• Reference example

• Setting up a naming context

• Setting up the root entry

• Cross references

• Knowledge example

• Remote aliases

• Replication

• Setting up a shadowing agreement

• Replication attributes

• Converting shadow into master

• Replication example

• LDAP change log

NOTE: A directory can be replicated or distributed using the ViewDS Management Agent

or Stream Directory User Agent (Stream DUA). A basic configuration can be

implemented using the ViewDS Management Agent, and then embellished using

the Stream DUA.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

148 Chapter 7: Replicating or distributing data

Distributed operations overview

Distributed operations and the need for knowledge configuration arise when the

Directory Information Tree (DIT) is split across multiple DSAs.

All directory entries in all systems which share directory information with one another

via X.500 must belong to the same DIT. If the whole DIT is held in a single DSA, then

there are no entries to be held in other DSAs, and no special setup for distributed

operations is required. Such a model may be appropriate for a centralized corporate

directory which has no connections to other corporate or public directories.

If a DIT is split between DSAs, a given DSA will in practice hold a small number of

branches of the whole DIT. Each branch is called a naming context.

Naming contexts

A connected subtree of real directory information in a DSA is called a naming context.

A naming context can consist of as little as a single entry, or can comprise the whole

DIT. In general, a DSA will hold a small number of naming contexts.

Figure 5: Naming contexts in a DSA

A naming context may start with an entry immediately subordinate to the DIT root (the

DIT root can never be a real entry), or an entry deeper down in the DIT. The entry at

the top of the naming context is called the context prefix. A context prefix is often a

subschema administrative point (see page 51).

A naming context may extend to the leaves of the subtree starting at the context

prefix, or it may be ‘pruned’, with branches held in other DSAs. Each of those remotely

held branches is then a naming context in the other DSA.

Kinds of knowledge

Knowledge is information that allows a DSA to locate an entry held in another DSA. It

consists of the access point of the DSA and may contain the name of the entry

explicitly, or may simply contain a superior name.

DSA

n a m in g

c o n te x t 1

n a m in g

c o n te x t 2

n a m in g

c o n te x t 3

c o n te x t

p re fi x

c o n te x t

p re fi x

c o n te x t

p re fi x

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 149

For each naming context that a DSA holds, it must hold two kinds of knowledge:

• Immediate superior knowledge, which is knowledge of the DSA that holds the

naming context that is immediately superior to this context prefix.

• Subordinate knowledge of the DSAs that hold naming contexts that are immediately

subordinate to entries in this naming context.

It can be seen that the two kinds of knowledge make up a bi-directional link: if DSA2

has immediate superior knowledge that refers to DSA1, then DSA1 has subordinate

knowledge that refers to DSA2. Note that immediate superior knowledge is stored

using the specificKnowledge attribute, not the superiorKnowledge attribute.

In addition to its immediate superior knowledge, a DSA must hold knowledge of one

DSA to turn to when it can’t resolve any components of an entry’s name. Such

knowledge is called a superior reference, and is stored using the

superiorKnowledge attribute.

If the naming context begins with an immediate subordinate of the DIT root, there is

no DSA that holds the immediately superior entry (since no entry holds the real DIT

root), and superior knowledge is absent. The DSA is called a first-level DSA.

If the naming context extends to the leaves in every case then there are no

subordinate naming contexts and subordinate knowledge is absent.

There are two kinds of subordinate knowledge, depending on whether the superior

DSA knows the name(s) of the immediately subordinate context prefixes in the

subordinate DSA:

• A specific subordinate reference identifies a particular subordinate DSA with a

named subordinate which is a context prefix in that DSA.

• A non-specific subordinate reference identifies a particular subordinate DSA with

unnamed subordinates in that DSA.

First-level and subordinate DSAs

If a DSA receives a query involving an entry which attaches to the DIT at a point

higher than any entry it holds, it passes the query to another DSA called the superior

DSA. The DSA itself is, in the context of the query, the subordinate DSA. The superior

DSA is chosen because it holds entries closer to the DIT root and is more likely to be

able to process the query.

This process cannot continue indefinitely, and since the DIT root is not a real entry,

the DSAs that hold immediate subordinates of the root must be able to handle the

query. They do this by maintaining a (potentially long) list of peer DSAs, and are

prepared to resolve any query by referring or chaining the query to those peers.

In terms of the knowledge model, first-level DSAs all hold the knowledge that would

be held if the DIT root entry were a real entry in that DSA with specific subordinate

references to all other first-level DSAs.

A DSA is classed as a first-level DSA if it holds any entry which is an immediate

subordinate of the root. The entry will of course be a context prefix.

A special case is an isolated first-level DSA. This is a first-level DSA with no peers. It

communicates with its subordinate DSAs, but is able to partially name-resolve every

query. Such a DSA may be appropriate for a company that wants to limit directory

operations to its own DSAs which are interconnected in a hierarchical fashion.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

150 Chapter 7: Replicating or distributing data

Configuring a DSA for distributed operations

Configuring a DSA for distributed operations involves two steps:

• Setting up each of the naming contexts in the DSA, which includes setting up

superior and subordinate knowledge for the context prefix.

• Setting up the root entry.

These steps are described in subsequent sections. Note that the first step generally

involves making knowledge configuration changes at more than one DSA. This is

because every naming context involves at least two DSAs: the one holding the context

prefix, and the one holding the superior of the context prefix.

DSE types

Directory information in a particular DSA is held in DSA-specific entries (DSEs). Each

DSE holds the name of an entry and may (but need not) hold other information

associated with the corresponding directory entry.

An entry in the DIT may be held in different DSAs in a variety of forms. It may be a

real entry in one DSA, a shadowed entry in another, a glue entry (providing a name

only) in a third DSA, and a knowledge reference in a fourth DSA. The role played by

the entry in a specific DSA is called its DSE type, and is held in an operational

attribute called dseType.

dseType

The dseType attribute records the type of each entry held in a DSA. Every entry in a

DSA has this attribute. However, it is normally suppressed when the ViewDS DSA

dumps directory information because the DSA can generally infer the appropriate

value when adding an entry.

In general, ViewDS sets the dseType of an entry according to attributes it contains

rather than any supplied dseType value. The following rules apply:

• If the entry is created without an objectClass attribute and is added using the

DAP Admin Protocol, it is automatically assigned a dseType of glue. If it has an

objectClass attribute it will be a glue entry if the glue bit is set in the supplied

dseType value.

• If specificKnowledge is present then the xr, subr, immSupr and sa bits are

taken from the supplied dseType value.

• If supplierKnowledge is present the shadow bit is set. Otherwise, it is set based

on the supplied dseType value. If no dseType value was supplied then the

shadow bit is set to match its parent entry.

• If the supplied dseType and the parent entry’s dseType both have the root bit

set, then the actual dseType will also have the root bit set.

In particular, the dseType must be given explicitly for entries which hold the

specificKnowledge attribute in order to specify the kind of knowledge.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 151

The attribute is defined as:

dseType ATTRIBUTE ::= {

 WITH SYNTAX DSEType

 EQUALITY MATCHING RULE bitStringMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID {ds 12 0} }

DSEType ::= BIT STRING {

 root (0), -- root DSE –

 glue (1), -- represents knowledge of a name only –

 cp (2), -- context prefix –

 entry (3), -- object entry –

 alias (4), -- alias entry –

 subr (5), -- subordinate reference –

 nssr (6), -- non-specific subordinate reference –

 supr (7), -- superior reference –

 xr (8), -- cross reference –

 admPoint (9), -- administrative point –

 subentry (10), -- subentry –

 shadow (11), -- shadow copy –

 immSupr (13), -- immediate superior reference –

 rhob (14), -- rhob information –

 sa (15), -- subordinate reference to alias entry -

 dsSubentry (16), -- DSA Specific subentry --

 familyMember (17)} -- family member --

sepType

The sepType attribute is a ViewDS-specific operational attribute held in entries whose

dseType is cp, alias, subr or nssr. It is equivalent to dseType except it

represents the bits of dseType as a multi-valued attribute with an enumerated integer

syntax and facilitates indexing. The sepType attribute is normally never seen in

ViewDS, being suppressed when an entry is dumped, and calculated by the DSA

when an entry is loaded. It is defined as:

sepType ATTRIBUTE ::= {

 WITH SYNTAX SEPType

 EQUALITY MATCHING RULE sepTypeMatch

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID {vf 12 2} }

}

SEPType ::= ENUMERATED {

 cp (0), -- context prefix –-

 alias (1), -- alias entry –-

 subr (2), -- subordinate reference –-

 nssr (3), -- non-specific subordinate reference –-

 subentry (4), -- subentry --

 attIncomplete (5), -- attribute completeness –-

 subIncomplete (6), -- subordinate completeness --

}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

152 Chapter 7: Replicating or distributing data

Access points
A DSA access point is represented using an ASN.1 syntax called AccessPoint. A

number of standard operational attributes have this syntax, or a closely related one.

The definition of AccessPoint is:

AccessPoint ::= SET {

 ae-title [0] Name,

 address [1] PresentationAddress,

 protocolInformation [2] SET OF ProtocolInformation OPTIONAL }

Name ::= CHOICE {

 rdnSequence RDNSequence

}

ProtocolInformation ::= SEQUENCE {

 nAddress OCTET STRING,

 profiles SET OF OBJECT IDENTIFIER }

ae-title holds the Relative Distinguished Name (RDN) of the DSA. It can be

chosen arbitrarily. However, some third-party products recommend that the DSA

name should belong to a naming context superior to any held in the DSA.

address holds the DSA’s presentation address (see page 30).

protocolInformation holds optional information about the network profiles

supported at address.

Example

The access point of a DSA with name { organizationName "Deltawing" /

commonName "Deltawing DSA" } and presentation address

{,0403H,0403H,{49520086FF00H}} would be represented using Stream DUA

notation as:

{

 ae-title rdnSequence :

 { organizationName "Deltawing" / commonName "Deltawing DSA"

},

 address {

 sSelector '0403'H,

 tSelector '0403'H,

 nAddresses { '49520086FF00'H }

 }

}

Knowledge attributes

Knowledge is information needed to find an entry in another DSA. It consists of the

access point of the other DSA, and (optionally) the name of the entry in the other

DSA.

There are several kinds of knowledge, represented by different attribute types:

• supplierKnowledge and consumerKnowledge, which are built automatically by

the DSA from consumerStatus and supplierStatus; and

• secondaryShadows (which is not currently generated by ViewDS).

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 153

superiorKnowledge

This attribute holds the access point of nominated superior DSA’s that can find entries

which this DSA does not hold and whose superiors this DSA does not hold. It is only

ever found in the DIT root entry. The definition of the attribute is:

superiorKnowledge ATTRIBUTE ::= {

 WITH SYNTAX AccessPoint

 EQUALITY MATCHING RULE accessPointMatch

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID ds 12 2 }

AccessPoint is the access point of the superior DSA.

Each non-first-level DSA is required by X.500 to hold this attribute in their root DSE.

The superior reference of a DSA may be chosen by one of the following methods:

• The administrator of the DSA may negotiate with the administrators of other DSAs

to establish a superior reference path to a first level DSA.

• The superior reference may refer to any DSA which holds an entry whose DN has

fewer RDN terms than any entry held by the DSA for which the superior reference

is being chosen.

specificKnowledge

This single-valued attribute holds the access point of a single nominated DSA that

holds the real entry information for the glue entry that contains this attribute. The real

entry must be a context-prefix entry in that DSA. It is used to hold immediate superior

references, specific subordinate references, and cross references. The definition of

the attribute is:

specificKnowledge ATTRIBUTE ::= {

 WITH SYNTAX MasterAndShadowAccessPoints

 EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE distributedOperation

 ID ds 12 3 }

MasterAndShadowAccessPoints ::= SET OF MasterOrShadowAccessPoint

MasterOrShadowAccessPoint ::= SET {

 COMPONENTS OF AccessPoint,

 category [3] ENUMERATED {

 master (0),

 shadow (1) } DEFAULT master,

 chainingRequired [5] BOOLEAN DEFAULT FALSE

}

AccessPoint is the access point of the other DSA.

category indicates whether the DSA holds master or shadow information.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

154 Chapter 7: Replicating or distributing data

nonSpecificKnowledge

This multi-valued attribute holds the access points of other DSAs that hold

subordinates of the entry within which this attribute appears. It appears in the root

entry of first-level DSAs, and in real entries at the bottom of a naming context that

contain a non-specific subordinate reference.

nonSpecificKnowledge ATTRIBUTE ::= {

 WITH SYNTAX MasterAndShadowAccessPoints

 EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch

 NO USER MODIFICATION TRUE

 USAGE distributedOperation

 ID ds 12 4 }

With this background, it is possible to describe how to set up distributed operations so

that DSAs that hold only part of the DIT can communicate with other DSAs.

Reference example

This section provides a reference example used throughout this chapter to illustrate

distributed operations and replication.

Assume Deltawing wishes to join its directory with that of a number of companies in

the USA. The directories of those companies are all under the C "US" node of the

DIT which can be accessed via a (non-ViewDS) DSA called DSA3.

Also assume that Deltawing wishes to split its directory between two DSAs: a main

DSA and a secondary one holding the Deltawing InfoSystems organizational unit.

This leads to the following configuration:

Figure 6: Example DIT and DSA configuration

The context prefixes are:

DSA1: C "AU"

DSA2: C "AU" / organizationName "Deltawing" /

 organizationalUnit "Deltawing InfoSystems"

DSA3: C "US"

DSA1

DSA2

DSA3

Del tawing

Del tawing

InfoSystems

AU US

DIT root

Ace

T ransport

T ransport

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 155

Assume the three DSAs have the following access points. The strings dsa1-

access-point, dsa2-access-point, and dsa3-access-point will be used in

the examples, and should be replaced with the text shown below.

dsa1-access-point : replace with:

{

 ae-title rdnSequence :

{C "AU" / organizationName "Deltawing" / commonName

“Deltawing DSA"},

 address {

 tSelector '0401'H,

 nAddresses { '49520086FF00'H }

 }

}

dsa2-access-point : replace with:

{

 ae-title rdnSequence :

 { C "AU" / organizationName "Deltawing" / organizationalUnit

"Deltawing InfoSystems"

 / commonName "InfoSystems DSA" },

 address {

 tSelector '0401'H,

 nAddresses { '49520087FF00'H }

 }

}

dsa3-access-point : replace with:

{

 ae-title rdnSequence :

{C "US" / organizationName "XYZCorp" / commonName "XYZCorp

DSA"},

 address {

 sSelector '0A00'H,

 tSelector '0B00'H,

 nAddresses { '49520088FF00'H }

 }

}

Setting up a naming context

If the entry at the top of the naming context (the context prefix) is an immediate

subordinate of the DIT root (as in DSAs 1 and 3), you need take no special action. For

any other naming context (as in DSA 2), you need to:

• Create glue entries for entries between the DIT root and the context prefix.

• Determine which DSA holds the entry that is the real superior of the context prefix

(the superior DSA), and determine the context prefix of the naming context of that

superior entry (the superior context prefix).

• In this DSA, add an immediate superior reference to the superior DSA in the glue

entry corresponding to the superior context prefix.

• In the superior DSA, add a specific or non-specific subordinate reference to the

context prefix in this DSA.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

156 Chapter 7: Replicating or distributing data

Glue entries

For each of the entries between the root entry and the context prefix, it is necessary to

create a glue entry that holds an RDN and joins its superior to its subordinate(s).

The purpose of the glue entry is simply to hold an RDN. The glue entry immediately

superior to the context prefix entry also holds the immediate superior reference, and

any glue entry can hold a cross reference.

Example

To add the entry C "AU" / organizationName "Deltawing" /

organizationalUnit "Deltawing InfoSystems" to DSA 2 as a context prefix,

add the following glue entries (knowledge and schema attributes are not shown):

entry

 C "AU"

with

 C "AU";

entry

 C "AU" / organizationName "Deltawing"

with

 organizationName "Deltawing", ;

Immediate superior reference

An immediate superior reference is required whenever the DSA holds an entry (which

will be a context prefix) whose superior is in another DSA. This will be the case for

every context prefix unless it is an immediate subordinate of the root.

The immediate superior reference is stored as an attribute of type

specificKnowledge in the glue entry that corresponds to the superior context prefix

in the superior DSA. The glue entry should be given an explicit dseType attribute

which includes the value immSupr. The value of specificKnowledge is the access

point of the DSA which holds the real superior entry.

Example

Figure 7: Example DIT and DSA configuration (repeated)

DSA1

DSA2

DSA3

Del tawing

Del tawing

InfoSystems

AU US

DIT root

Ace

T ransport

T ransport

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 157

In the reference example (repeated above) DSA 1 holds the entry Deltawing and all

its subordinates except for the subtree Deltawing InfoSystems; and DSA 2 holds

the entry Deltawing InfoSystems and all its subordinates.

The entry Deltawing InfoSystems in DSA 2 is a context prefix, and DSA 2 must

hold an immediate superior reference to DSA1 in the glue entry which is the context

prefix for the immediate superior of Deltawing InfoSystems. The immediate

superior is Deltawing, but since DSA1 also holds the superior of Deltawing, the

entry AU is the context prefix.

A Stream DUA script for DSA 2 that adds an immediate superior reference to DSA1 is

as follows:

modify {

 C "AU"

}

with changes {

 remove attribute dseType,

 add attribute dseType {immSupr},

 add attribute specificKnowledge { dsa1-access-point }

}

options manageDSAIT

;

NOTE: dsa1-access-point itself begins with an opening brace, so two opening braces

appear when the access point is spelled out. The extra braces arise because

specificKnowledge has syntax SET OF MasterOrShadowAccessPoint.

The subordinate reference

Every context prefix that is not an immediate subordinate of the DIT root has a

corresponding real entry in another DSA. This other DSA (the superior DSA) has a

subordinate that is the context prefix.

The real entry must have one of the following associated with it:

• a specific subordinate reference to this context prefix and DSA; or

• a non-specific subordinate reference to this DSA.

To illustrate, in the above example, DSA 1 must hold either a specific subordinate

reference to Deltawing InfoSystems in DSA 2, or a non-specific subordinate

reference to DSA 2.

Specific subordinate reference

A specific subordinate reference is created by adding an entry with the following

characteristics:

• its name is that of the context prefix in the remote DSA;

• its dseType is subr; and

• it contains a value of the specificKnowledge attribute (defined above).

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

158 Chapter 7: Replicating or distributing data

Example

The following Stream DUA script for DSA 1 adds a specific subordinate reference to

Deltawing InfoSystems in DSA 2:

entry

 C "AU" / organizationName "Deltawing" / organizationalUnit

"Deltawing InfoSystems"

with

 organizationalUnitName "Deltawing InfoSystems",

 dseType {subr},

 specificKnowledge { dsa2-access-point }

;

Non-specific subordinate reference

A non-specific subordinate reference is created by adding an attribute of type

nonSpecificKnowledge (defined above) to the superior entry.

Example

The following Stream DUA script for DSA1 adds a non-specific subordinate reference

to DSA 2:

modify

 country "AU" / organizationName "Deltawing"

add values

 nonSpecificKnowledge { dsa2-access-point }

;

Setting up the root entry

A DSA that is to participate in distributed operations needs certain information in and

concerning the root entry. Specifically, it needs:

• A myAccessPoint attribute in the root entry to establish its own OSI address.

• Peer or superior knowledge. If it is a first-level DSA it needs a set of specific

subordinate references to all immediate subordinates of the DIT root entry that are

held in other DSAs. Otherwise it needs a superiorKnowledge attribute in the

root entry to a single nominated superior DSA.

These requirements are mandated by X.500. A ViewDS DSA needs three additional

attributes in its root entry:

• An attributeTypeExtensions attribute to enable indexing of directory

information and other features, as described on page 95.

• A dsaCollaborators attribute to establish the list of DSAs with which this DSA

can initiate or accept binds. It provides mutual credentials and other information,

and is described on page 117.

• An anonymousPrivilege attribute to enable anonymous binds (for example, by

Access Presence to invoke the GetMyDN procedure).

Every DSA mentioned in a knowledge attribute requires an entry in

dsaCollaborators if this DSA is to be able to communicate with it. If such an entry

is missing, this DSA will return a referral to the other DSA.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 159

myAccessPoint

This single-valued attribute names the DSA and sets up its OSI address. It must be

present in the root entry of the DSA if the DSA is to participate in distributed

operations. The definition for the attribute is:

myAccessPoint ATTRIBUTE ::= {

 WITH SYNTAX AccessPoint

 EQUALITY MATCHING RULE accessPointMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID ds 12 1 }

The attribute syntax AccessPoint is described earlier.

Example

The following Stream DUA script assigns the name and presentation address of

DSA1, using the access point dsa1-access-point defined previously:

modify

add values

 myAccessPoint dsa1-access-point

;

Peer or superior knowledge

First level DSAs

If the DSA holds any naming context that begins immediately below the DIT root, it is

a first-level DSA. As such, it must hold a set of specific subordinate references to all

immediate subordinates of the DIT root entry held in other DSAs.

These specific subordinate references are created in the normal way. That is, they are

created through glue entries subordinate to the root named with the context-prefix

name in the other DSA, and contain a specificKnowledge attribute with the access

point of that DSA.

If the DSA holds every immediate subordinate of the DIT root (e.g. if the DIT is

constrained to have only a single such subordinate, say the local country entry), then

the DSA is an isolated first-level DSA, and no such specific subordinate references

are needed.

NOTE: An alternative permitted by ViewDS is for the root entry to hold a

nonSpecificKnowledge attribute giving only the access points of other first level

DSAs. Such a configuration may, however, not conform with X.500.

ViewDS supports the ability to distribute the functions of a first-level DSA among

multiple DSAs. An entry that is the subordinate of the root can be set up to have the

root bit set in its dseType. Hence, other DSAs set up in the same way can share

knowledge of that entry in the same way first-level DSAs share knowledge of the root

entry. This means that no single DSA needs to hold the master entry for a country, for

example, and any number of DSAs can cooperate to share knowledge of the entry.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

160 Chapter 7: Replicating or distributing data

Example

The following Stream DUA script for DSA 1 will add DSA 3 as a first-level DSA holding

the context prefix C "US".

entry

 country "US"

with

 dseType {immSupr},

 specificKnowledge { dsa3-access-point } ;

Subordinate DSAs

If a DSA is not a first-level DSA, it is required to hold a superiorKnowledge

attribute in the root entry which contains the access point of a single nominated

superior DSA that can find entries which this DSA does not hold and whose superiors

this DSA does not hold.

The superiorKnowledge attribute is defined earlier in this chapter. It is used only in

the root entry.

Example

The following Stream DUA script for DSA 2 will add DSA 1 as its superior DSA:

modify

add values

 superiorKnowledge dsa1-access-point ;

Cross references

A cross reference is a direct reference to a context prefix in another DSA. If present in

a DSA, it allows the DSA to more efficiently resolve queries that would otherwise be

chained to the superior DSA.

It is created by adding an attribute of type specificKnowledge to an entry

representing the context prefix, and setting the dseType of the entry to {xr}. This

entry may be a superior (a glue entry) of a locally held naming context, or it may

require that creation of a suitable glue entry as a subordinate of an existing glue entry.

Knowledge example

This section summarizes the requirements for configuring knowledge in the three

DSAs of the reference example shown in Figure 6 on page 154.

DSA1

DSA1 is a first-level DSA. It must hold:

• Root entry holding myAccessPoint with access point of DSA1,

dsaCollaborators with names and mutual credentials for DSA2 and DSA3, and

anonymousPrivilege.

• Glue entry C "US" with dseType {subr} and specificKnowledge containing

the access point of DSA3.

• Real entry C "AU" with schema information for AU.

• Real entry C "AU" / O "Deltawing" with schema information for Deltawing

(assuming this is the subschema administrative entry)

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 161

• Glue entry C "AU" / O "Deltawing" / OU "Deltawing InfoSystems"

with dseType {subr} and specificKnowledge containing the access point

of DSA2.

• Real entries for all other subordinates of Deltawing and their subtrees.

DSA2

DSA2 is a subordinate DSA. It must hold:

• Root entry holding myAccessPoint with access point of DSA2,

superiorKnowledge containing the access point of DSA1, dsaCollaborators

with name and mutual credentials for DSA1, and anonymousPrivilege.

• Glue entry C "AU" with dseType {immSupr} and specificKnowledge

containing the access point of DSA1.

• Glue entry C "AU" / O "Deltawing" with schema information for Deltawing

(assuming that Deltawing InfoSystems uses the Deltawing subschema and does

not set up its own).

• Real entry C "AU" / O "Deltawing" / OU "Deltawing InfoSystems" .

• Real entries for all subordinates of Deltawing InfoSystems and their subtrees.

DSA3

DSA3 is a first-level DSA. It must hold:

• Root entry holding myAccessPoint with access point of DSA3.

• Glue entry C "AU" with dseType {subr} and specificKnowledge containing

the access point of DSA1.

• Real entry C "US" with schema information for US.

• Entries for subordinates of the US entry.

Remote aliases

A remote aliases is an alias to an entry in another DSA. When a remote alias is

encountered in a directory operation, the directory normally chains the operation to the

DSA holding the remote entry. When a remote alias is encountered in the subtree of

the base object of a search request, the DSA will normally chain the search request in

the same manner, provided the search argument has the searchAliases flag set.

(Do this with Stream DUA using the set search aliases command or by using

the search command with and aliases.)

This is correct X.500 behaviour, but it causes two serious problems. Each remote

alias results in a separate chained search, so a single search request can potentially

generate hundreds or thousands of chained searches. And even if there are very few

remote aliases, the need to perform a chained search requires the DSA to check

every alias within the subtree on every search request to determine whether it is a

remote alias; even if most aliases are local aliases, this checking can greatly degrade

search performance.

For these reasons, ViewDS will not normally check remote aliases within a search

subtree, even if the search request specifies that aliases should be checked. Local

aliases are always handled correctly. ViewDS will only check those remote aliases for

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

162 Chapter 7: Replicating or distributing data

which the administrator has added the ViewDS-specific operational attribute

remoteAlias.

It is recommended that the number of remote aliases to which this attribute is added is

kept small (at most 10 say).

remoteAlias

remoteAlias is a ViewDS-specific operational attribute that can optionally appear

within alias entries. If the alias appears in the subtree of a search request that

specifies searchAliases, then the DSA will chain the search through that alias only

if the remoteAlias operational attribute is present. Its syntax is currently an empty

sequence. It is defined as:

remoteAlias ATTRIBUTE ::= {

 WITH SYNTAX RemoteAlias

 SINGLE VALUE TRUE

 USAGE distributedOperation

 ID {vf 18 14} }

}

RemoteAlias ::= SEQUENCE {

 -- reserved for automatically generated cached info

}

Replication

ViewDS DSAs support replication of directory data in accordance with the DSA

Information Model of X.501, the procedures for distributed operation in X.518, and the

replication protocol of X.525.

Familiarity with the concepts of X.525 is assumed in the rest of this chapter.

Restrictions

The following practices are recommended for replication:

• Ensure that the network connection between supplier and consumer DSAs is

sufficiently reliable and fast to allow large protocol data units (PDUs) to be

transferred successfully. X.525 updateShadow PDUs can be very large – typically

around 1 MB per 1000 entries updated. In the case of a full refresh, a single PDU

holds the data for every entry in the unit of replication; in the case of an incremental

refresh, the PDU holds only the data that was changed since the last refresh.

• Ensure that the DSA operational parameter dots is set to greater than 1, so that

replication activity can proceed without causing user requests to be suspended until

replication activity completes.

• For a DSA which is acting as both supplier and consumer, ensure that the DSA

operational parameter optimistic is set to off, and the DSA operational

parameter updates is set to 2, so that large replication transactions are not

constantly aborted due to influence from user updates.

• For a DSA which is acting solely as a consumer, ensure that the DSA operational

parameter updates is set to 1, so that normal update operations do not interfere

with shadow update operations.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 163

• Avoid replication agreements that make use of replication features that ViewDS

does not support. In ViewDS, subtree specifications are not supported by shadow

consumers (“subordinate completeness” is not implemented) and entries copied

with attribute selection applied are treated as complete.

• Do not set up more than about 10 shadowing agreements in a single DSA. Having

a large number of shadowing agreements may have a detrimental effect on

performance, even when no shadow updates are being processed.

Setting up a shadowing agreement

To set up a shadowing agreement between two ViewDS DSAs:

• Ensure that distributed operations between the DSAs is working – that the DSAs

are known to one another via knowledge references and the dsaCollaborators

attribute, and that a communications path exists between them. Always establish

distributed operations between the DSAs before attempting to set up replication.

• If the shadow consumer DSA is to be a first-level DSA, ensure its knowledge is set

up correctly; do not rely on using replicated data from some other first-level DSA to

fill out missing first level knowledge. Consider making the shadow consumer DSA a

subordinate DSA in such a case.

• Use Stream DUA to add a value of the supplierStatus operational attribute to

the root entry of the shadow supplier DSA, and a value of the consumerStatus

operational attribute to the root entry of the shadow consumer DSA. These

operational attributes are described below.

To set up a shadowing agreement between a ViewDS DSA and a non-ViewDS DSA,

proceed as above for the ViewDS DSA, and follow the procedure prescribed for the

non-ViewDS DSA in its documentation.

Activating an agreement

A shadowing agreement is active as soon as it is added to a DSA. If the agreement

specifies an update mode which is scheduled and gives a beginTime, updates will

not begin to flow between the DSAs until beginTime is reached; otherwise they

begin to flow immediately. In that case it is recommended that the consumerStatus

attribute be added to the shadow consumer first and the supplierStatus attribute

be added to the shadow supplier second. This avoids the shadow supplier attempting

an initial update operation before the shadow consumer is ready.

Schema changes

Schema changes that include the definition of new attribute types not previously

known to the consumer DSA pose special difficulties in replication. The new attribute

type definitions must be installed in the shadow consumer DSA before it can know the

ASN.1 syntax needed to decode values of those types. Hence, if the new attribute

type definitions and entry changes that include the addition of values of the new

attribute types are propagated in the same full or incremental shadow update PDU,

the consumer DSA will fail to decode the new attributes.

ViewDS therefore requires all shadow updates that involve schema changes which

define new attribute types to be propagated in a separate and earlier PDU to the one

that adds such attributes to entries. To comply with this, it is recommended that the

shadow supplier administrator make the schema changes, wait until the updates have

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

164 Chapter 7: Replicating or distributing data

been propagated successfully to all shadow consumers (by checking the

supplierStatus lastUpdate time described below), and only then allow values of

the new attribute types to be added.

In normal operation, this is assisted by using the recommended supplier-initiated on-

change update mode. However, if a full refresh is necessary, or if recent changes are

batched for any reason, then the situation can arise where new attribute definitions

are included with changes that depend on them. Such updates will fail.

In this case, the shadow consumer DSA’s administrator must manually install the new

attribute definitions ahead of the shadow update operations being sent. The new

attribute definitions can be added anywhere in the shadow consumer DIT, and deleted

afterwards.

Replication attributes

There are two ViewDS-specific operational attributes relating to replication which hold

the definition of a shadowing agreement and its operational status.

supplierStatus

A value of this multi-valued attribute must be present in the root entry for each

shadowing agreement for which this DSA is the shadow supplier. It is ViewDS-specific

and the ViewDS representation of a shadowing agreement.

The attribute is added by the administrator to set up a shadowing agreement. Several

components are used by the DSA to record changes to the state of the agreement.

The attribute definition is:

supplierStatus ATTRIBUTE ::= {

 WITH SYNTAX SupplierStatus

 EQUALITY MATCHING RULE shadowStatusMatch

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID { vf 12 6 }

}

SupplierStatus ::= SEQUENCE {

 consumer [0] AccessPoint,

 identifier [1] INTEGER,

 agreement [2] ShadowingAgreementInfo,

 update [3] ShadowState,

 othertime [4] UpdateWindow OPTIONAL,

 lastUpdate [5] GeneralizedTime OPTIONAL,

 nextUpdate [6] GeneralizedTime OPTIONAL,

 onChangeRetry [7] INTEGER DEFAULT 60 -- seconds --,

 logId [8] INTEGER OPTIONAL,

 fullUpdateRequired [9] BOOLEAN DEFAULT FALSE,

 sessionId [10] INTEGER OPTIONAL,

 replicationExclusions [11]

 SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 replicateShadowPlane [12] PlaneRef OPTIONAL,

 forceIncrementalReplace [13] BOOLEAN DEFAULT FALSE,

 version [14] INTEGER DEFAULT 0,

 lastItemUpdate [15]

 GeneralizedTime OPTIONAL –- obsolete --,

 nextUpdateLastItem [16] ReplicationSequenceNumber OPTIONAL,

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 165

 shadowPlaneRefreshed [17] BOOLEAN DEFAULT FALSE,

 replicationLogStatus [18] ReplicationLogStatus OPTIONAL,

 triggerTotalRefresh [19] TotalRefreshTrigger OPTIONAL

}

consumer

The access point of the DSA which is the shadow consumer in the agreement.

identifier

An integer that identifies the shadowing agreement. It corresponds to the operational

binding ID in the Directory Operational Binding protocol. It can be chosen arbitrarily,

subject to the requirement that the combination of the consumer Distinguished Name

and the identifier are unique.

agreement

This is shadowing agreement information, and it is defined as follows:

ShadowingAgreementInfo ::= SEQUENCE {

 shadowSubject UnitOfReplication,

 updateMode UpdateMode

 DEFAULT supplierInitiated : onChange : TRUE,

 master AccessPoint OPTIONAL,

 secondaryShadows [2] BOOLEAN DEFAULT FALSE

}

shadowSubject

The shadowSubject defines the unit of replication, which is a subtree and the

information within it. The unit of replication is defined as follows:

UnitOfReplication ::= SEQUENCE {

 area AreaSpecification,

 attributes AttributeSelection,

 knowledge Knowledge OPTIONAL,

 subordinates BOOLEAN DEFAULT FALSE,

 contextSelection ContextSelection OPTIONAL,

 supplyContexts [0] CHOICE {

 allContexts NULL,

 selectedContexts SET OF CONTEXT.&id } OPTIONAL

}

AreaSpecification ::= SEQUENCE {

 contextPrefix DistinguishedName,

 replicationArea SubtreeSpecification

}

Knowledge ::= SEQUENCE {

 knowledgeType KnowledgeType ENUMERATED {

 master (0),

 shadow (1),

 both (2) },

 extendedKnowledge BOOLEAN DEFAULT FALSE

}

AttributeSelection ::= SET OF ClassAttributeSelection

ClassAttributeSelection ::= SEQUENCE {

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

166 Chapter 7: Replicating or distributing data

 class OBJECT IDENTIFIER OPTIONAL,

 classAttributes ClassAttributes DEFAULT allAttributes : NULL

}

ClassAttributes ::= CHOICE {

 allAttributes NULL,

 include [0] AttributeTypes,

 exclude [1] AttributeTypes

}

AttributeTypes ::= SET OF AttributeType

Where:

area Defines the subtree to be replicated.

contextPrefix The name of the entry at the top of the naming context to which

the subtree belongs.

replicationArea Specifies a subtree within that naming context. Note that a

shadow consumer only correctly supports an empty
SubtreeSpecification. If the base or

specificationFilter components are present the shadowed

information is used incorrectly.

attributes Defines the set of attributes to be shadowed. It is a set of
ClassAttributeSelection, each member of the set

specifying the attributes to be shadowed (in classAttributes)

for entries whose object class or superclass is specified in
class. If class is absent, the ClassAttributeSelection

applies to all entries. ClassAttributes specifies either

allAttributes (all user attributes and collective attributes),

include (an explicit list of attributes to include), or exclude (all

user attributes except those explicitly listed). The specification of

an attribute supertype implicitly includes any subtypes.

NOTE: Access Presence requires the ViewDS-specific
operational attributes userName and privilege to be present

in an entry for binding and to occur and updates to be allowed

(see the Technical Reference Guide: User Interfaces). If a

ViewDS user binds to a DSA that holds a replicated copy of the

user’s entry and these attributes are missing from the replicated

information, the bind will fail. The attributes will be replicated only
if explicitly listed in attributes. This is recommended.

knowledge Defines whether or not to include subordinate knowledge of either
master or shadowed naming contexts: knowledgeType is one of

master (master naming context knowledge only), shadow

(shadow naming context knowledge only), or both (both types of
knowledge). extendedKnowledge if true specifies that all

subordinate knowledge references are to be included even if they
fall outside replicationArea; they must, however, still be

subordinate to contextPrefix.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 167

updateMode

Defines the update strategy for the shadowing agreement. It is defined as shown

below.

UpdateMode ::= CHOICE {

 supplierInitiated [0] SupplierUpdateMode,

 consumerInitiated [1] ConsumerUpdateMode

 }

SupplierUpdateMode ::= CHOICE {

 onChange BOOLEAN,

 scheduled SchedulingParameters

}

ConsumerUpdateMode ::= SchedulingParameters

SchedulingParameters ::= SEQUENCE {

 periodic PeriodicStrategy OPTIONAL,

 -- must be present if othertimes is set to FALSE -

 othertimes BOOLEAN DEFAULT FALSE

}

PeriodicStrategy ::= SEQUENCE {

 beginTime Time OPTIONAL,

 windowSize INTEGER,

 updateInterval INTEGER

}

Time ::= GeneralizedTime

 -- as per clause 34.3 b) and c) of Recommendation X.208/ISO 8824

Where:

supplier

Initiated

Specifies that the supplier initiates updates. If it is onChange, the

supplier initiates an update whenever a change occurs; if it is
scheduled, the supplier initiates an update in accordance with

the specified scheduling parameters.

consumer

Initiated

Specifies that the consumer initiates updates in accordance with

the specified scheduling parameters.

Scheduling

Parameters

Specifies a periodic strategy; if othertimes is true, it specifies

that updates may also occur at other times. PeriodicStrategy

specifies a beginTime, the start time of the first window, a

windowSize, the length of the update window in seconds, and

an updateInterval, the interval between the start of one

update window and the start of the next in seconds. If
beginTime is not specified, the update strategy starts at the

time the shadowing agreement is activated.

master

Specifies the master DSA for the shadowing agreement. It may be omitted if the

master is the DSA itself – that is, it only needs to be present when the shadowing

agreement is a secondary shadowing agreement.

secondaryShadows

Defines whether the consumer DSA can create secondary shadow agreements for the

replicated data.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

168 Chapter 7: Replicating or distributing data

update

The status of the shadow agreement. A value of ShadowState as defined below. This

parameter is maintained by the DSA. When a shadow agreement is first created (for

example, as an administrative action), it is automatically set to fullUpdateRequired.

ShadowState is defined as follows:

ShadowState ::= ENUMERATED {

 idle (0),

 fullUpdateRequired (1),

 updatePending (2),

 fullUpdatePending (3),

 inactive (4) }

othertime

othertime is:

UpdateWindow ::= SEQUENCE {

 start Time,

 stop Time }

lastUpdate

The time at which the last update occurred. This value is maintained by the DSA.

nextUpdate

The time at which the next update is due. This value is maintained by the DSA.

onChangeRetry

When an on-change update cannot be initiated, this is the period (in seconds) that the

DSA waits before it retrying the update. This might be necessary, for example, when

the consumer DSA cannot be contacted.

logID

Used by the DSA to record the identifier of the log file it uses to store incremental

update information. This field should be omitted when creating a new shadowing

agreement.

fullUpdateRequired

Used by the DSA to record that a full update is required due to an internal

inconsistency. Omit this field when creating a new shadowing agreement.

sessionId

Used by the DSA to record internal information relating to the update session. This

field should be omitted when creating a new shadowing agreement.

replicationExclusions

An optional field comprising of a list of object identifiers of object classes or attribute

types which should not be included in the replication PDU. This was included to allow

subentries and operational attributes to be excluded from the replication PDU despite

the X.500 standard indicating they should be automatically included. This was added

to assist in interworking with DSAs which do correctly handle subentries and some

operational attributes in the replication PDUs.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 169

replicateShadowPlane

An optional field used to set up a secondary shadow replication agreement. This field

should be set on a secondary supplier DSA to the plane reference information of the

shadow plane that this DSA receives from another supplying DSA. This plane

reference is composed of the name of the supplying DSA and the agreement identifier

of the shadowing agreement for this replicated information.

PlaneRef ::= SEQUENCE {

 dsaName Name,

 agreementID AgreementID }

forceIncrementalReplace

An optional Boolean field that can be used to force the replication of incremental

changes to use the replace option in the incrementalRefresh PDU instead of

using the other options permitted by the X.500 standards. This option is intended to

overcome interworking problems with DSAs which only support the replace behaviour

in the incrementalRefresh PDU.

version

This content has not yet been developed.

lastItemUpdate

This content has not yet been developed.

nextUpdateLastItem

This content has not yet been developed.

shadowPlaneRefreshed

Used to flag that a total refresh was completed for the shadow plane this agreement is

supplying to a secondary consumer. This could happen while a secondary total

refresh is already in progress, so the fullUpdateRequired flag is not safe to use.

replicationLogStatus

replicationLogStatus is a read-only property identifying the sequence numbers

currently in use in the replication log. Attempts to modify this field will be ignored.

triggerTotalRefresh

An optional configurable threshold that will cause a supplier DSA to automatically

initiate a total refresh for an agreement if the number of outstanding incremental

updates for that agreement exceeds the threshold. This field has a type of

TotalRefreshTrigger which is defined as follows:

TriggerTimeOfDay ::= TIME (SETTINGS "Basic=Time Time=HMS

Midnight=Start")

TotalRefreshTrigger ::= SEQUENCE {

 Threshold [0] ReplicationSequenceNumber,

 Window [1] SEQUENCE {

 Begin TriggerTimeOfDay,

 End TriggerTimeOfDay

 } OPTIONAL

}

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

170 Chapter 7: Replicating or distributing data

Where:

threshold Defines the number of outstanding incremental updates that will

cause an automatic total refresh to be triggered.

window If present, indicates that an automatic total refresh will only be

triggered during the defined time period. If the begin time is later

than the end time, the defined time period is assumed to start on

one day and finish on the next day (bridging midnight). The

"begin" and "end" fields represent times of day in the format

"HH:MM:SS" with an optional time zone ("Z" or "+HH:MM" or "-

HH:MM"). If the time zone is not provided, the times are assumed

to be in the local time of the server.

consumerStatus

A value of this multi-valued attribute must be present in the root entry for each

shadowing agreement for which this DSA is the shadow consumer. It is ViewDS-

specific and the ViewDS representation of a shadowing agreement. A value of the

attribute is added to set up a shadowing agreement; a number of components in the

value are for use by the DSA to record changes to the state of the agreement. The

definition of the attribute is:

consumerStatus ATTRIBUTE ::= {

 WITH SYNTAX ConsumerStatus

 EQUALITY MATCHING RULE shadowStatusMatch

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID { vf 12 7 }

}

ConsumerStatus ::= SEQUENCE {

 supplier [0] AccessPoint,

 identifier [1] INTEGER,

 agreement [2] ShadowingAgreementInfo,

 coordinate [3] ShadowState,

 othertime [4] UpdateWindow OPTIONAL,

 lastUpdate [5] GeneralizedTime OPTIONAL,

 fullUpdateRequired [9] BOOLEAN DEFAULT FALSE,

 sessionId [10] INTEGER OPTIONAL,

 supplierKnowledge [11] BOOLEAN DEFAULT TRUE,

 nonSupplyingMaster [12] AccessPoint OPTIONAL,

 supplierIsMaster [13] BOOLEAN OPTIONAL

 -- supplierIsMaster is effectively DEFAULT TRUE unless

 -- nonSupplyingMaster is present in which case it is ignored

 -- (and treated as FALSE).

}

Aside from the following, the components of this syntax are the same as those of

SupplierStatus (see page 164).

supplierKnowledge is a flag to control whether a supplierKnowledge attribute

value should be automatically created in the context prefix of the replicated area. By

default, this flag is TRUE. This flag may be required where it is not desirable for the

replica to chain requests to the supplier.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 171

nonSupplyingMaster is an optional field which allows an administrator of a

secondary shadow DSA to provide information of the master of the replicated area (as

opposed to the secondary supplier) which may be used in constructing the

supplierKnowledge attribute value.

supplierIsMaster is an optional field used to indicate that the supplier is not the

master of the replicated information. This field is assumed to have the value TRUE

unless the nonSupplyingMaster is specified, in which case this field is assumed to

be FALSE. The purpose of this field is to indicate that the supplier is not the master

when the actual master DSAs access point is not specified in the

nonSupplyingMaster field (for example, because it is not known or should not be

referenced directly by this DSA).

Converting shadow into master

ViewDS can convert a shadow copy of a DIT, obtained through replication, into a

master DSA. This capability should be used with care as it can lead to loss of data

and cannot be reversed without discarding all the replicated information and

completing a total refresh from the original supplier of the replicated information.

However, this ability can be useful to provide a form of fail-over in a disaster recovery

plan.

In the event that this ability is going to be used, the consumer DSA which may be

converted to a master in the future should not master any data itself and should be

configured to replicate as much as the supplier as possible. Any filtering of attributes

or object classes will result in this information being unavailable if the consumer takes

over the role as master in the replication setup.

The actual process of converting a shadow DSA into a master DSA requires the

following steps. These steps can be carried out on an active system, requiring no

interruption to the services offered by the shadow DSA.

1. Remove existing master plane information, such as immediate superior reference

and superior reference, from the shadow DSA.

2. Remove the planeReference attribute from the root entry of the shadow plane.

This attribute is used to indicate the plane is a shadow not a master. To remove

this attribute requires use of the manageDSAITPlaneRef in the service controls

with the DSA name of the supplier and the agreementID.identifier field

used to indicate which plane to modify. The request must also include the

schemaChecking service control with a value of

ignoreUserModifiableFlag. Removing the planeReference value will

automatically remove: the consumerStatus value used to construct this shadow

plane; the supplierKnowledge value in the context prefix; and clean up any

references to this plane in supplierStatus (used for secondary shadowing).

More information and assistance for using this ability may be obtained from your

ViewDS vendor.

Replication example

This section gives an example of how to set up two shadowing agreements between

two of the DSAs in the reference example (reproduced below). The roles of the two

DSAs are reversed in the second shadowing agreement.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

172 Chapter 7: Replicating or distributing data

Assume DSA1 is to be a shadow consumer for an organization C "US" / O "Ace

Transport" mastered in DSA3. Therefore, DSA3 is shadow supplier for this subtree.

Updates are to be in accordance with the default – that is, supplier-initiated and on

change. The agreement has identifier 1.

Change to DSA1

Make this change to DSA1:

Agreement 1 (consumer to DSA3 re Ace Transport)

modify

 add consumerStatus {

 supplier dsa3-access-point,

 identifier 1,

 agreement {

 shadowSubject {

 area {

 contextPrefix {

 / countryName "US"

 / organization "Ace Transport"

 },

 replicationArea { }

 },

 attributes {

 {} -- all user attributes, plus: --,

 { classAttributes include : {

 userName, privilege, attributePresentation,

 objectClassPresentation, searchOptions,

 duaBanners, defaultEntitlement,

 userEntitlement, userConfig

 }}

 }

 }

 },

 coordinate fullUpdateRequired

 };

DSA1

DSA2

DSA3

Del tawing

Del tawing

InfoSystems

AU US

DIT root

Ace

T ransport

T ransport

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 173

Change to DSA3

Make this change to DSA3:

Agreement 1 (supplier to DSA1 re Ace Transport)

modify

 add supplierStatus {

 consumer dsa1-access-point,

 identifier 1,

 agreement {

 shadowSubject {

 area {

 contextPrefix {

 / countryName "US"

 / organization "Ace Transport"

 },

 replicationArea { }

 },

 attributes {

 {} -- all user attributes, plus: --,

 { classAttributes include : {

 userName, privilege, attributePresentation,

 objectClassPresentation, searchOptions,

 duaBanners, defaultEntitlement,

 userEntitlement, userConfig

 }}

 }

 }

 },

 update fullUpdateRequired,

 onChangeRetry 30

 }

;

At the same time, assume DSA1 is to be shadow supplier to DSA3 for the

organizational unit C "AU" / O "Deltawing" / OU "Transport". Updates are

to be supplier-initiated and scheduled to begin on 1 Jan 1997 at 2.00 a.m. with a

window size of 1 hour and an update interval of 24 hours. The agreement has

identifier 3.

Change to DSA1

Make this change to DSA1:

Agreement 3 (supplier to DSA3 re Transport)

modify

 add supplierStatus {

 consumer dsa3-access-point,

 identifier 3,

 agreement {

 shadowSubject {

 area {

 contextPrefix {

 / countryName "AU"

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

174 Chapter 7: Replicating or distributing data

 / organizationName "Deltawing"

 / organizationalUnitName "Transport"

 },

 replicationArea { }

 },

 attributes {

 {} -- all user attributes, plus: --,

 { classAttributes include : {

 userName, privilege, attributePresentation,

 objectClassPresentation, searchOptions,

 duaBanners, defaultEntitlement,

 userEntitlement, userConfig

 }}

 }

 },

 updateMode supplierInitiated:scheduled:{

 periodic {

 beginTime "19970101020000+1000",

 windowSize 3600,

 updateInterval 86400

 }

 }

 },

 update fullUpdateRequired

 } ;

Change to DSA3

Make this change to DSA3:

Agreement 3 (consumer to DSA3 re Transport)

modify

 add consumerStatus {

 supplier dsa3-access-point,

 identifier 3,

 agreement {

 shadowSubject {

 area {

 contextPrefix {

 / countryName "AU"

 / organizationName "Deltawing"

 / organizationalUnitName "Transport"

 },

 replicationArea { }

 },

 attributes {

 {} -- all user attributes, plus: --,

 { classAttributes include : {

 userName, privilege, attributePresentation,

 objectClassPresentation, searchOptions,

 duaBanners, defaultEntitlement,

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 175

 userEntitlement, userConfig

 }}

 }

 },

 updateMode supplierInitiated:scheduled:{

 periodic {

 beginTime "19970101020000+1000",

 windowSize 3600,

 updateInterval 86400

 }

 }

 },

 coordinate fullUpdateRequired

 };

LDAP change log

The LDAP change log is a mechanism to support synchronisation with third-party

applications. The log is a directory entry that contains a record of all changes made to

the DIT. It does, however, add a significant overhead to every update operation and

should only be enabled if required by a third-party application.

The DSA adds records to the log if there is a change-log attribute in the root entry. It

creates records as subordinates of the viewDSChangeLogContainer entry.

The LDAP change log should also have a clean-up configuration declared to remove

obsolete entries. Otherwise, it will continue to grow and eventually exhaust the

storage capacity of the ViewDS host.

The entries in the LDAP change log are replicated through DISP if they satisfy the

area of replication in a replication agreement. Master change-log entries are only

created on a DSA in response to updates to master entries on the same DSA.

Updates to shadow entries by DISP do not cause change-log entries to be created on

a shadow consumer (although shadow change-log entries may appear).

Updates to change-log entries are allowed (subject to access controls) but they do not

cause further change-log entries to be created.

You can manage the LDAP change log through either the ViewDS Management

Agent (see its help system for instructions) or through Stream DUA (see below).

Enabling the LDAP change log using Stream DUA

Enabling the LDAP change log involves:

• Creating an LDAP change log container

• Creating an LDAP change log attribute

Creating an LDAP change log container

This container entry must be added manually using Stream DUA:

viewDSChangeLogContainer OBJECT-CLASS ::= {

SUBCLASS OF { top }

MUST CONTAIN { commonName }

MAY CONTAIN { viewDSNextChangeNumber | viewDSChangeLogExpiry }

ID { 1 3 6 1 4 1 21473 5 6 0 }

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

176 Chapter 7: Replicating or distributing data

}

viewDSNextChangeNumber ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID { 1 3 6 1 4 1 21473 5 18 16 }

}

viewDSChangeLogExpiry ATTRIBUTE ::= {

WITH SYNTAX ChangeLogExpiry

EQUALITY MATCHING RULE allComponentsMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID { 1 3 6 1 4 1 21473 5 18 17 }

}

ChangeLogExpiry ::= SEQUENCE {

timeToLive [0] INTEGER (1..MAX),

-- Minimum number of seconds a change-log entry is retained

-- before being deleted

cleanupSchedule [1] PeriodicStrategy

-- Change-log entries that exceed their timeToLive are only

-- deleted during the time period defined by the PeriodicStrategy

}

The name and location of the container entry is not restricted, but by convention it is a

first-level entry with the commonName of changelog.

The viewDSNextChangeNumber is automatically amended by the DSA and cannot

be modified manually. The viewDSChangeLogExpiry is optional, but highly

recommended because it specifies when obsolete change-log entries will be removed.

Without it, the change-log entries will accumulate indefinitely.

The timeToLive should be high enough to allow third-party applications sufficient

time to fetch entries before they expire. It should also allow for the possibility of an

application failing overnight and not being restarted until the next day. (There is no

harm in retaining change-log entries for days, or even weeks.)

The PeriodicStrategy ASN.1 type is defined by DISP. The removal of expired

entries is an expensive operation; hence, the time period specified in

cleanupSchedule should occur when the DSA is expected to have a light load.

Creating an LDAP change log attribute

The LDAP change log is active when the DN of the viewDSChangeLogContainer

entry is stored in the changelog attribute in the root entry.

changelog ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

ID { 2 16 840 1 113730 3 1 35 }

}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Chapter 7: Replicating or distributing data 177

Reinitialising the LDAP change log using Stream DUA

To reinitialize the LDAP change log, remove the changelog attribute and the entire

subtree below the viewDSChangeLogContainer entry; then add a new

viewDSChangeLogContainer entry and changelog attribute.

Access Proxy

ViewDS Access Proxy provides a Certificate Lookup Service that complies with TSCP

specifications (see http://www.tscp.org). It allows email clients to obtain digital

certificates in the same organization or in external collaborating organizations.

For an overview and installation instructions, see the ViewDS Installation Guide:

Access Proxy.

A DSA configured for Access Proxy includes a knowledge reference to each End-User

Certificate Repository Service (EUCRS) plus the following operational attribute.

CertificateRepositoryService

This operational attribute stores the email domains served by a particular EUCRS.

CertificateRepositoryService ::= SEQUENCE {

 emailDomains [0] SEQUENCE SIZE(1..MAX) OF UTF8String

}

certificateRepositoryService ATTRIBUTE ::= {

 WITH SYNTAX CertificateRepositoryService

 EQUALITY MATCHING RULE allComponentsMatch

 SINGLE VALUE TRUE

 USAGE distributedOperation

 ID id-viewDS-doa-certificateRepositoryService

}

The emailDomains component contains one or more full DNS name. These are the

possible host names of the email addresses for users whose entries are in the

EUCRS indicated by the DSA’s specificKnowledge.

 179

Appendix A

 Stream DUA

This appendix describes Stream Directory User Agent (DUA) commands and notation.

Stream DUA commands

add

Deprecated.

Adds synonyms, noise words, or truncated words:

add = “add” type (add-synonym | add-noise-word |

add-truncated) [options] “;”

This command is still supported to assist when upgrading to ViewDS version 7.1. The

synonyms, noise words and truncated words are now defined in the following

operational attributes:

• viewDSSynonyms

• viewDSNoiseWords

• viewDSTruncatedWords

When upgrading to version 7.1, the add command results in values being added to the

above operational attributes in the root entry.

The operational attributes must then be manually transferred into the subschema

subentry(s) when the upgrade is complete. While the operational attributes in the root

entry would affect the DSA, and would be used in indexing, they would not be

replicated or transferred in naming-context information for distributed operations to

other DSAs. Moving them to subschema subentry(s) ensures consistent approximate-

matching behaviour across all DSAs.

add-synonym

Adds a new synonym pair to viewDSSynonyms in the root entry. The position of a

value as the left or right component of a pair is not significant.

add-synonym = “synonym” value “=” value

add-noise-word

Adds value as a noise word for the given type. Noise words are keywords to be

ignored when indexing or keyword-matching an attribute value, and are omitted from

the automatic abbreviations which the DSA forms for some attributes.

add-noise-word = “noise” “word” value

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

180 Appendix A: Stream DUA

add-truncated

Adds value as a truncated word for the given type. Truncated words are preferred

truncations for keywords to be used by the DSA when building the hierarchyName

attribute (see Technical Reference Guide: User Interfaces) or building automatic

abbreviations of the attribute value.

add-truncated = “truncated” “word” value

add notes

To ensure that the correct values can be indexed, noise words and truncated words

must be specified before the database is loaded with data. Adding a new noise word

or truncated word to a loaded database will corrupt the indexes.

The normal order for loading a database from dib.* files loads the files in the correct

order: dib..root, then dib..words (the noise-words file), then schema and entry

information.

Adding noise words or truncated words for user-defined attributes presents a problem.

The syntax for the user-defined attributes is normally defined in the schema file and is

therefore unknown to the DSA when it is processing the dib..words file. In this

situation, add attributeTypes definitions directly to the root entry for user-defined

attributes for which noise words or truncated words will be added.

NOTE: The files dib..synonyms and dib..words are deprecated. The information here

about the add command only applies when upgrading to ViewDS version 7.1.

add examples
add givenName synonym "bill" = "William"

add organizationName noise word "and"

add organizationalUnitName truncated word "Div" # Division

assign

Assigns values to the DSA's operational parameters:

assign = “assign” parameter “=” value

{ parameter “=” value } “;”

The command sets each parameter in the argument list to the supplied value. It

changes the value currently used by the DSA and saves the new value in the DSA's

cmsrv.cfg file.

You can see the current values of the operational parameters using the display

command. The DSA's operation parameters are described in Chapter 3.

This command is an alternative to the DSA Controller command setwrite (see

page 10).

bind

Establishes a connection to the DSA using the authentication credentials provided:

bind = “bind” [“with”]

 [simple-credential | strong-credentials]

 [”protocol” protocol] ”; ”

simple-credentials =

 [“username” username]

 [“password” password]

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 181

strong-credentials =

 { ”username” name | ”certificate” path }

 ”key” path ”to” name

An explicit bind is generally not required – Stream DUA will automatically bind to the

DSA using the default bind credentials when necessary.

Simple authentication

A bind using simple authentication can be made using the simple-credentials form of

the command. This takes the form of a username/password authentication.

Without any arguments, a simple-authentication bind is made with the default settings.

The default settings can be modified using the set command with the -u, -p and -a

options (see page 196).

Strong authentication

A bind using strong authentication can be made using the strong-credentials form of

the command. This requires a Distinguished Name (DN) and secret key.

The DN can be provided in two ways:

• using the keyword username – the X.509 certificate matching the provided secret

key must be present in the entry of the user identified by this DN.

• by identifying a user certificate – the DN is assumed to be the subject name in the

certificate. The DN of the DSA must also be provided (using the to keyword) to

form the bind token. Where the capath configuration-file parameter is provided, it

may be used to construct the certification path for the user's certificate in the bind

token.

The secret key must be provided using the keyword key, which identifies a file

containing the PKCS-8 encoded private key.

For more information, see Strong authentication on page 112.

checkpoint

Renames the current query and update log files (the DSA starts writing log information

to new log files):

checkpoint = “checkpoint” [options] “;”

The command renames each log file by appending the filename with a numeric

extension. The extension is a hex encoding of a timestamp plus the number of times a

checkpoint has occurred since the DSA was started. The following example is the

filename for a check-pointed update log:

ulog-839e3fd4510

This naming convention allows filenames to be sorted according to when they were

created.

The action of check-pointing the log files also occurs automatically whenever the

save command is used; and when a dump command is invoked with a base object of

the root entry.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

182 Appendix A: Stream DUA

compare

Tests whether a given value exists in an entry:

compare = “compare” name “to” type “=” value [options] “;”

The name is the full DN for the entry to be compared. The command returns either

true or false according to whether the entry has an attribute of the given type with

the given value.

For example:

compare {

 organizationName "Deltawing"

 / commonName "Fred Smith"

}

to

 userPassword = '414243444546'H

;

This example compares the userPassword in the entry { organizationName

"Deltawing" / commonName "Fred Smith" } with the supplied value

'414243444546' (that is, "ABCDEF"), returning true if the password matches.

delete

Deletes one or more entries from the database:

delete = “delete” [“subtree”] name [content]

 [options]“;”

The name is the full DN of the entry to be deleted.

The content of the entry may be listed but is ignored. This facility is provided for the

DSA update logs which will list the attributes of each deleted entry so that the

operation can be reversed manually.

Only entries without subordinates can be deleted unless the keyword subtree is

declared. If subtree is declared, Stream DUA deletes the entire subtree, which

involves a series of searches. For these searches to succeed the DSA’s sizelimit

and timelimit must be high enough to allow all immediate subordinates to be

retrieved in a single operation.

For example:

delete {

 organizationName "Deltawing"

 / organizationalUnitName "Finance"

};

This example deletes one entry, { organizationName "Deltawing" /

organizationalUnit "Finance" }.

display

Displays the DSA’s status and the settings of operational parameters:

display = “display” “;”

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 183

dsa

Opens or closes the DSA's database or terminate the DSA:

dsa = “dsa” { “close” | “open” | “terminate” } “;”

The arguments are:

• open – opens the database if it is closed, and does nothing if it is already open.

• close – closes the database if it is open, and does nothing if it is already closed.

• terminate – terminates the DSA if it is running.

dump

Dumps the contents of a subtree as Stream DUA entry commands, LDIF content

records, ELDIF content records, DSML version 1, or DSML version 2:

dump = “dump” name

 [key]

 [destination]

 [format]

 [fallback]

 [options] “;”

key = “with” “key” string

destination = “to” path

format = “as” (“ldif” | “eldif” | “sdua-format” | "dsml-v1" | dsml-v1-

all-in-one" | "dsml-v2" | "dsml-v2-all-in-one")[“records”]

fallback = “with” “fallback” (“transfer-gser” | “transfer-rxer” |

“binary”)

The command’s arguments are:

name The DN of the base entry for the subtree to be dumped.

key If specified, this string is the key used to encrypt the
userPassword attribute. If not specified, the default key is used.

destination If specified, the DSA dumps to the path. (The path string must

be enclosed in quotes.) If not specified, the DSA dumps to the
path specified by the dumpdir parameter in the configuration file.

format If specified, the DSA dumps in the format defined in the command.

If not specified, the DSA dumps in Stream DUA format.

(ELDIF is similar to LDIF, except that RXER encoded values are

printed as text rather than in a BASE64 format. Note that ELDIF

might not be compatible with non-ViewDS implementations.)

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

184 Appendix A: Stream DUA

Fallback If specified, the DSA dumps in the format defined in the command.

If not specified, the DSA dumps in Stream DUA format.

(ELDIF is similar to LDIF, except that RXER encoded values are

printed as text rather than in a BASE64 format. Note that ELDIF

might not be compatible with non-ViewDS implementations.)

Dumping in DSML allows information within ViewDS to be

exported for use by XML enabled applications that support DSML.

Note that DSML dumps cannot be reloaded into ViewDS as we

only support the process of exporting DSML, not importing it.

The dsml-v1 and dsml-v2 format options will produce a set of

dib files, each containing the DSML representation of up to 1000

entries each.

The dsml-v1-all-in-one and dsml-v2-all-in-one format

options can be used to create a single file holding all of the

dumped data.

dump notes

If the base entry for a dump is the DIT root and the directory data is being dumped in

Stream DUA format, data is dumped to the following files:

File Dumped to the file

dib..root An empty (filling) command followed by a dump of

the root entry.

dib.00000 All other entries are dumped to numbered files, starting with
dib.00000 and new a file created every 1000 entries.

To allow fast reloading, the empty (filling) command is

written at the start of the first dib file and a fill command

at the end of the final file.

This command is only available to the super-administrator.

dump example
dump {/};

empty

Removes all entries from the database and leaves an empty root entry.

empty = “empty” [filling] “;”

filling = “for” “filling”

The filling argument only has effect with the ViewDS fast-load utility (see page 11)

and causes the DSA to defer building database index files until it receives a fill

command (see page 185).

empty notes

When loading a database there is usually no need to use the empty command

explicitly. This is because when the database is dumped from the root entry, the DSA

encloses the dumped data between two commands:

• empty (filling) at the start of the first dump file

• fill at the end of the last dump file

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 185

Use the empty command with caution as it destroys all data in the database.

empty example
empty;

entry

The keyword entry is a synonym for the insert command (see page 185).

exit

Exits an interactive Stream DUA session:

exit = “exit”

It is equivalent to pressing Control-D.

fill

Builds database indexes:

fill = “fill” “;”

Use this command when building has been deferred by an empty (filling)

command. Both commands only have an effect when the DSA is running as vfload.

The empty (filling) command switches the DSA into a mode where it defers

building the database index files until a subsequent fill command is given. The

fill command is normally given only after all entries have loaded. Deferring index

building in this way results in a much faster load of the database.

A fill command at an inappropriate time (that is, after the database is indexed) is

ignored.

With large a database, a fill command can take a long time to complete.

Until a fill command is given, the DSA will refuse to start up other than as vfload,

and will usually return an empty result set in response to a search operation.

insert

Inserts a new entry in the database:

insert = (“insert” | “entry”) name

 [content] [options] “;”

The name is the full DN for the new entry.

The list of attributes given by the content argument should include the object class

of the entry. For object classes that are subclasses, all object classes below top need

to be supplied. If the object class is not given, the entry becomes an entry of dseType

{glue} (see Chapter 7).

The keyword entry is a synonym for insert.

insert example 1
insert {

 organizationName "Deltawing"

 / organizationalUnit "Finance"

}

with {

 objectClass organizationalUnit,

 manager "Fred Smith",

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

186 Appendix A: Stream DUA

 location "123 Collins Street, Melbourne 3000",

 telephoneNumber "(03)555-1234"

};

This example adds the organizational unit { organizationName "Deltawing" /

organizationalUnit "Finance" } to the DIT and supplies values for the

objectClass, manager, location and telephoneNumber attributes. The DSA

will also add the attribute organizationalUnit and give it the value Finance. The

superior entry { organizationName "Deltawing" } must already exist in the DIT.

insert example 2
insert {

 organizationName "Deltawing"

 / organizationalUnit "Finance"

 / commonName "Fred Smith"

}

with {

 objectClass organizationalPerson

 surname "Smith",

 givenName "Fred",

 location "123 Collins Street, Melbourne 3000",

 telephoneNumber "(03)555-5678"

};

This example adds a new organizational person to the DIT, and supplies values for

the objectClass, surname, givenName, location and telephoneNumber

attributes. The new entry will also be given the commonName attribute.

ldap-add

Uses LDAP protocol to insert a new entry in the database:

ldap-add = “ldap” “add” ldapdn

 [ldap-content]

 [controls] “;”

The ldapdn is the full DN for the new entry.

The list of attributes given by the ldap-content argument should include the object

class of the entry. For object classes that are subclasses, all object classes below top

need to be specified.

ldap-add example
ldap add "ou=Finance,o=Deltawing"

with {

 objectClass "organizationalUnit",

 manager "Fred Smith",

 location "123 Collins Street, Melbourne 3000",

 telephoneNumber "(03)555-1234"

};

This example adds the organizational unit "ou=Finance,o=Deltawing" to the DIT

and supplies values for the objectClass, manager, location and

telephoneNumber attributes. The DSA will also add the attribute ou

(organizationalUnit) and give it the value Finance. The superior entry

"o=Deltawing" must already exist in the DIT.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 187

ldap-compare

Uses LDAP protocol to determine whether a given value exists in an entry:

ldap-compare = “ldap” “compare” ldapdn “to”

 ldap-type “=” ldap-value

 [controls] “;”

The ldapdn is the full DN for the entry to be compared.

Either true or false is returned according to whether the entry has an attribute of

the specified type with the specified value.

ldap-compare example
ldap compare

 "cn=Fred Smith,o=Deltawing"

to

 userPassword = '414243444546'H;

This example compares the userPassword in the entry "cn=Fred

Smith,o=Deltawing" with the supplied value '414243444546' (that is,

"ABCDEF"). It returns true if the password matches.

ldap-delete

Uses LDAP protocol to remove an entry from the database:

ldap-delete = “ldap” “delete” ldapdn

 [ldap-content]

 [controls] “;”

The ldapdn is the full DN of the entry to be deleted. Only entries without subordinates

can be deleted.

For example:

ldap delete

 "ou=Finance,o=Deltawing"

;

ldap-modify

Uses LDAP protocol to modify the named entry:

ldap-modify = “ldap” “modify” ldapdn

 [ldap-changes]

 [controls] “;”

The ldapdn is the full DN of the entry to be modified. Modifications are performed in

the order they appear in the command.

ldap-changes = [“with”] “changes” “{”

 [ldap-change

 { “,” ldap-change }]

 “}”

ldap-change = change-add

 | change-delvals

 | change-delatt

 | change-replace

change-add = “add” (“attribute” | “values”)

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

188 Appendix A: Stream DUA

 ldap-type { ldap-value }

change-delvals = “delete” “values”

 ldap-type { ldap-value }

change-delatt = “delete” “attribute”

 ldap-type { ldap-value }

change-replace = “replace” ldap-type

 [old-values]

 [“add” { ldap-value }]

old-values = “(” “delete” { ldap-value } “)”

Each ldap-change is applied to the entry in turn.

The four alternatives are:

• change-add – adds the attribute of the specified type if it does not exist in the

entry. Otherwise, it adds the listed values to the existing attribute. The choice of

keyword, attribute or values, has no significance.

• change-delvals – removes only the listed values from the attribute of the

specified type. If no values are listed the change is ignored.

• change-delatt – removes the attribute of the specified type. The values of the

removed attribute may be listed but are ignored by Stream DUA. This facility is

provided to allow reversal of the change recorded in the Stream DUA format update

logs.

• change-replace – removes all the current values of the attribute of the specified

type then adds the listed values, if specified. It is equivalent to a change-delatt

followed by a change-add for the same attribute type. The removed values may

be listed with old-values but these are ignored by Stream DUA. This is provided

to allow reversal of the change recorded in the Stream DUA format update logs.

ldap-modify example
ldap modify

 "cn=Fred Smith,o=Deltawing"

with changes {

 remove values telephoneNumber "(03)543 2109",

 add values telephoneNumber "(03)543 9012",

 add attribute employeeNumber "1234" "9822"

};

This example modifies the entry "cn=Fred Smith,o=Deltawing". It modifies the

value of telephoneNumber and adds two new values of employeeNumber. Note

that the cn (commonName) attribute value Fred Smith may not be modified with

this command. You must use a rename command (for example, ldap-rename).

ldap-move

Uses LDAP protocol to move an entry (and any subordinates) to a new position in the

DIT:

ldap-move = “ldap” “move” ldapdn “to” ldapdn

 [delete-old] [controls] “;”

The first ldapdn is the full DN of the entry to be moved; and the second ldapdn is

the new name for the entry after the move.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 189

ldap-move example
ldap move "cn=Fred Smith,ou=Finance,o=Deltawing"

to "cn=Fred Smith,ou=Marketing,o=Deltawing" ;

This example moves the entry Fred Smith so that it becomes a subordinate of the

entry "ou=Marketing,o=Deltawing".

ldap-rename

Uses the LDAP protocol to rename an entry. It only changes an entry's Relative

Distinguished Name (RDN) and not its position in the DIT.

ldap-rename = “ldap” “rename” ldapdn

 “to” relative-ldapdn

 [delete-old]

 [controls] “;”

relative-ldapdn = string | “(” rdn “)”

The ldapdn is the full DN of the entry to be renamed.

The relative-ldapdn is the new RDN of the entry. The new RDN can be

represented in the conventional character string format for an LDAP RDN, surrounded

by quotes (for example, as a string); or in Stream DUA format, rdn, surrounded by

parentheses.

ldap-rename example
ldap rename

 "cn=Fred Smith,o=Deltawing"

to

 "cn=Fred R. Smith"

delete old

;

This example renames the entry Fred Smith to Fred R. Smith and deletes the

old value from the cn (commonName) attribute.

ldap-search

Uses LDAP protocol to search the database.

ldap-search = “ldap” “search” ldapdn

 search-arguments

 [controls] “;”

search-arguments = [scope]

 [“and” ldap-aliases]

 “for” ldap-filter

 [ldap-selection] limits

ldap-aliases = “neverDerefAliases”

 | “derefInSearching”

 | “derefFindingBaseObj”

 | “derefAlways”

The ldapdn is the DN for the base entry from which to search.

The ldap-aliases argument specifies whether aliases in the search subtree and/or

the base entry name are dereferenced. Aliases in the search subtree are

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

190 Appendix A: Stream DUA

dereferenced if derefInSearching or derefAlways is specified. Aliases are

dereferenced in locating the base entry if derefFindingBaseObj or derefAlways

is specified. The default, if ldap-aliases is not specified, is derefAlways.

ldap-filter

The keyword for introduces a filter to apply to the search. An ldap-filter is a

Boolean expression of ldap-filter-item. The not operator has highest

precedence followed by and then or. Parentheses may be used to alter the order of

evaluation.

ldap-filter = “(” ldap-filter “)”

 | ldap-filter-item [“dnatt”]

 | “not” ldap-filter

 | ldap-filter “and” ldap-filter

 | ldap-filter “or” ldap-filter

A ldap-filter-item is an assertion about the attribute values belonging to an

entry. The keyword dnatt specifies that the assertion applies to the attribute values

of the entry’s DN addition to the normal attribute values.

ldap-filter-item

ldap-filter-item = ldap-type “=” ldap-value

 | ldap-type “~=” ldap-value

 | ldap-type “>=” ldap-value

 | ldap-type “<=” ldap-value

 | ldap-type “present”

 | ldap-type “*=” ldap-substrings

 | ldap-ext-match

ldap-ext-match = ldap-type [“using” ldap-rule] “matches” ldap-value

 | “*” “using” ldap-rule “matches” ldap-value

ldap-substrings = [ldap-value] “*”

 { ldap-value “*” }

 [ldap-value]

The values of the specified attribute type are tested against the test value:

• “=” – equal to

• “~=” – approximately equal to

• “>=” – greater than or equal to

• “<=” – less than or equal to

The keyword present tests for the existence of the specified attribute type. A

substring search can be performed using one or more wildcards (“*”, which will

match zero or more characters) to separate a group of values for an equality match.

An extensible match can be obtained using the using ldap-ext-match form.

ldap-rule = rulename | object-identifier | ldap-oid

A rulename is a string identifying a matching rule, usually the same as the matching

rule’s conventional ASN.1 name. Names for the standard matching rules are built in

(see Appendix B) and are case insensitive. The rule may also be identified by an

object-identifier in modified ASN.1 value notation, or by an ldap-oid using

the dotted decimal representation for LDAP.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 191

A size or time limit may be imposed on the search request with the limits argument.

limits = [size-limit] [time-limit]

size-limit = “sizeLimit” “=” number

time-limit = “timeLimit” “=” number

ldap-search example
ldap search

 "o=Deltawing"

for sn ~= "smith" and

 not (givenName = "B" * or givenName = * "t")

return { sn givenName telephoneNumber };

This example searches the subtree headed by o=Deltawing for all entries with a sn

(surname) approximately matching smith and givenName that does not start with

'B' or end in 't'. The attributes surname, givenName and telephoneNumber are

returned for the matching entries.

list

Lists the subordinates of an entry.

list = “list” name [options] [output] “;”

The name is the full DN of the entry whose subordinates are to be listed. If name is

empty braces then the subordinates of the DIT root entry are listed.

If output is specified, the result of the list command is written to the named file.

Only the RDNs of the subordinates are listed.

For example:

list { organizationName "Deltawing" };

This returns the list of immediate subordinates of the entry { organizationName

"Deltawing" }.

modify

Modifies the named entry. The modifications are performed in the order listed in the

request.

modify = “modify” name [changes]

 [options] “;”

changes = [“with”] “changes”

 “{” [change { “,” change }] “}”

change = rematt | remvals | addatt | addvals

rematt = “remove” “attribute” type { value }

remvals = “remove” “values” attribute

addatt = “add” “attribute” attribute

addvals = “add” “values” attribute

The name is the full DN of the entry to be modified.

Each change is applied to the entry in turn. The four alternatives are:

• rematt removes the attribute of the specified type. The values of a removed

attribute may be listed but are ignored by Stream DUA. This facility is provided to

allow reversal of the change recorded in the Stream DUA format update logs.

• remvals removes the listed values of the specified type.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

192 Appendix A: Stream DUA

• addatt adds a new attribute.

• addvals adds additional values to an existing attribute.

modify example

This example modifies the entry { organizationName "Deltawing" /

commonName "Fred Smith" }, modifying the value of telephoneNumber and

adding two new values of employeeNumber. Note that the commonName attribute

value Fred Smith may not be modified with this command: you must use a rename

command.

modify {

 organizationName "Deltawing"

 / commonName "Fred Smith"

}

with changes {

 remove values telephoneNumber "(03)543 2109",

 add values telephoneNumber "(03)543 9012",

 add attribute employeeNumber "1234" "9822"

};

move

Moves entries (and any subordinates) to a new position in the DIT.

move = “move” name “to” name

 [delete-old] [options] “;”

The first name is the full DN of the entry to be moved. The second name is the new

name for the entry after the move.

For example:

move {

 organizationName "Deltawing"

 / organizationalUnit "Finance"

 / commonName "Fred Smith"

}

to {

 organizationName "Deltawing"

 / organizationalUnit "Marketing"

 / commonName "Fred Smith"

};

This moves the entry Fred Smith so that it becomes a subordinate of the entry

{ organizationName "Deltawing" / organizationalUnit "Marketing"

}.

quit

Quit an interactive session (the same as pressing Control-D).

Quit

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 193

read

Reads a single entry.

read = “read” name

 [“modifyRights”]

 [selection]

 [options] [output] “;”

The name is the full DN of the entry to be read.

The keyword modifyRights requests the DSA to provide information about what

permissions the current user has to modify the entry being read. This information is

returned as a list of items the user is permitted to modify.

For example:

read {

 organizationName "Deltawing"

}

return { manager modifyTimestamp updatersName };

This reads the entry { organizationName "Deltawing" } and returns the attributes

manager, modifyTimestamp and updatersName.

read { organizationName "Deltawing" } return all;

This reads the entry { organizationName “Deltawing” } and returns all

attributes, including operational attributes such as modifyTimestamp and

updatersName.

read {

 organizationName "Deltawing"

 / commonName "Fred Smith"

}

return all user types only;

This reads the entry { organizationName "Deltawing" / commonName "Fred

Smith" } and returns all user attribute types in the entry, but no attribute values and

no operational attribute types.

register

Adds schema definitions to Stream DUA’s knowledge of the Directory schema.

register = “register” attribute “;”

The attribute argument is one of the schema publication operational attributes

described in Chapter 4.

This command is normally not required; Stream DUA reads the schema publication

attributes from the DSA with the set (set-base or set-context) command, and

acquires schema knowledge from any schema publication operational attributes it

sees in passing (for example, while inserting entries). It is only needed when Stream

DUA is used with remote non-ViewDS DSAs that do not publish their schema. The file

quipu in the config directory contains schema definitions that allow Stream DUA to

interwork with QUIPU DSAs.

remove

Deprecated.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

194 Appendix A: Stream DUA

rename

Renames entries. It has the effect of only changing an entry's RDN and not its position

in the directory tree. It is a special case of the move command .

rename = “rename” name “to” “(” rdn “)”

 [delete-old] [options] “;”

The name is the full DN of the entry to be renamed.

The rdn is the new (last) RDN of the entry.

For example:

rename {

 organizationName "Deltawing"

 / commonName "Fred Smith"

}

to

 (commonName "Fred R. Smith")

delete old;

This renames the entry Fred Smith to the new name Fred R. Smith, deleting the

old value from the commonName attribute.

save

Makes a safe copy of the database files for backup purposes. The directory remains

available for normal operation, including updating, while the command is being

processed; the saved files reflect the database at the start of processing the

command. Note that it is unsafe to backup or copy the actual database (ddm.*) files

while the DSA is running. This command is only available to the super-administrator.

save = “save” [“to” path] “;”

If path is specified, the DSA will save its files in this file system directory. If not

specified, it will save them into the file system directory specified by the configuration-

file parameter savedir (which defaults to ${VFHOME}/save). The path string must

be enclosed in quotes.

search

Performs a search on the database.

search = “search” name

 [scope] [aliases]

 [“for” filter]

 [“paged” pagedResultRequest]

 [“matched”]

 [selection]

 [options] “;”

aliases = “and” [“not”] “aliases”

The name is the DN for the base entry at which to begin the search.

The aliases argument can be used to specify whether or not aliases in the search

subtree are dereferenced. Note that the options argument through the

dontDereferenceAliases field only controls whether aliases are dereferenced in

locating the base object. Aliases in the search subtree are normally dereferenced, but

this default may be overridden with the set (set-search) command. The

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 195

aliases argument allows the default to be overridden for the single command with

which it is used.

The keyword "for" introduces a filter to apply to the search. A filter is a

Boolean expression of filter-item. The not operator has highest precedence,

followed by "and", then "or". Parentheses may be used to alter the order of

evaluation.

filter = “(” filter “)”

 | filter-item [“dnatt”]

 | “not” filter

 | filter “and” filter

 | filter “or” filter

A filter-item is an assertion about the attribute values belonging to an entry. The

keyword “dnatt” specifies that the assertion applies to the attribute values of the

entry’s DN in addition to the normal attribute values.

filter-item = type “=” value

 | type “~=” value

 | type “>=” value

 | type “<=” value

 | type “present”

 | type “*=” substrings

 | extensible-match

extensible-match = (type | “*”) “using”

 matching-rule

 { “,” matchingRule }

 “matches” value

substrings = [value] “*”

 { value “*” } [value]

The values of the specified attribute type are tested for being equal to (“=”),

approximately equal to (“~=”), greater than or equal to (“>=”) or less than or equal to

(“<=”) the specified test value.

The keyword “present” tests for the existence of the specified attribute type. A

substring search can be obtained by using one or more wildcards (“*”, which will

match zero or more characters) to separate a group of values for an equality match.

An extensible match can be obtained using the using … matches form, in which

matchingRule is the name or object identifier of one of the built-in matching rules.

search notes

ViewDS DSAs can only handle extensible matches that specify the type and exactly

one matching rule.

The keyword "paged" introduces a paged results request. A paged result request

enables a subset of the result set matching the search to be returned. Furthermore,

the result to a search containing a paged result request will include a

queryReference which may be used to collect more of the result set of the same

search. This allows a large result set to be retrieved from the DSA a "page" at a time

instead of all at once. The pagedResultRequest is an ASN.1 type with the following

definition:

PagedResultsRequest ::= CHOICE {

 newRequest SEQUENCE {

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

196 Appendix A: Stream DUA

 pageSize INTEGER,

 sortKeys SEQUENCE OF SortKey OPTIONAL,

 reverse [1] BOOLEAN DEFAULT FALSE,

 unmerged [2] BOOLEAN DEFAULT FALSE

 },

 queryReference OCTET STRING

}

The "matched" keyword is used to request matched values only. When this keyword

is used, the search result will only return values of the attribute types in the filter

which actually matched some filter-item in the filter. For attribute types which

are requested in the selection but are not mentioned in the filter, all values are

returned as usual.

search examples
search { } for surname = "smith";

This searches the whole DIT (or the whole subtree below the prefix entry if a prefix

has been set) for entries having the attribute surname with an exact value smith,

returning all user attributes for any matching entries. Note that letter case is ignored

when doing an equality match on the surname attribute.

search {

 organizationName "Deltawing"

}

for surname ~= "smith" and

 not (givenName = "B" * or givenName = * "t")

return { surname givenName telephoneNumber };

This searches the subtree headed by { organizationName "Deltawing" } for all

entries having surname approximately matching smith and givenName not starting

with 'B' or ending in 't'. The attributes surname, givenName and telephoneNumber

are returned for the matching entries.

search {

 organizationName "Deltawing"

}

one level

for objectClass = organizationalUnit

return { organizationalUnitName manager };

This searches the immediate subordinates of { organizationName "Deltawing"

} for entries with object class organizationalUnit, returning the attributes

organizationalUnitName and manager for these entries.

search { }

for specificKnowledge present

return { specificKnowledge };

This searches the whole DIT for all entries having the specificKnowledge attribute,

returning just that attribute for each entry.

set

Establishes a context for subsequent commands.

set = "set" (set-base | set-context | set-prefix

 | set-search | options

 | set-username | set-password

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 197

 | set-protocol | set-timing

 | set-synchronization) ";"

The command has the ten forms described below.

set-base

Reads all the schema information from the chain of entries from the root of the DIT to

the entry with the nominated DN (name). When it starts up, the Stream DUA only

understands the predefined attributes, so it must read the schema publication

attributes to acquire an understanding of the user-defined attributes (see Chapter 4).

set-base = “base” [“object”] “to” name

set-context

The same as set-base but also searches for schema information in the subtree of

the nominated entry.

The set-context alternative is the simplest command to load schema information.

A set command with either set-base or set-context should be used as the first

command to Stream DUA every time it is invoked. This is most conveniently done by

including the command in the sdua.startup file (see page 6).

set-context = “context” “to” name

set-prefix

Sets a value for the prefix implied at the start of a relative name. Its initial value is the

DIT root.

set-prefix = “prefix” [“to”] name

For example:

set prefix {

 organizationName "Deltawing"

 / organizationalUnit "Marketing"

};

set-search

Sets the default for dereferencing of aliases in the search subtree for the search

command.

set-search = “search” [“not”] “aliases”

set-username

Modifies the default username when binding to the DSA. It may be either a userName

attribute value or a DN. It overrides the username set using the -u or -a command

line options.

set-username = “username” username

set-password

Modifies the default password to use to bind to the DSA. It overrides the password set

using the -p or -a command line options.

set-password = “password” password

For example:

set username "asherma";

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

198 Appendix A: Stream DUA

set username {

 organizationName "Deltawing"

 / organizationalUnitName "Deltawing InfoSystems"

 / commonName "Andrew Sherman"

};

set-protocol

Modifies the default protocol used to bind to the DSA. The default protocol is normally

DAP but may be changed to DAP Admin Protocol.

set-protocol = “protocol” protocol

set-timing

Enable or disable timing of operations sent to the DSA. When enabled, Stream DUA

measures the elapsed time between sending the operation to the DSA and receiving a

response and displays this information as a message at the beginning of the operation

result.

For example:

Started Wed Apr 19 14:00:56 2000, Execution Time: 0.030000

The execution time is measured in seconds. The default setting for timing is “off”.

set-timing = “timing” “=” (“on” | “off”)

set options

Sets default values for options (see options on page 218) that apply to subsequent

operations. It is overridden by an explicit options on a command. This command is

most useful in a file.

For example:

set options {

 serviceControls {

 options { localScope },

 priority high,

 timeLimit 2,

 attributeSizeLimit 1000

 }

}

set-synchronization

Synchronization is configured by an extension to the set command:

set-synchronization = "synchronization" ["context"]

 ("none" | value) ";"

The value is of the SynchronizationContext ASN.1 type in Stream DUA value-

notation format shown below.

SynchronizationContext ::= SEQUENCE {

 subtree [1] DistinguishedName OPTIONAL,

 types [2] SEQUENCE OF AttributeType OPTIONAL,

 classes [3] SEQUENCE OF SynchronizedClass,

 timestamp [4] GeneralizedTime OPTIONAL,

 group [5] DirectoryString { ub-name } OPTIONAL

}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 199

When a SynchronizationContext is set, Stream DUA attempts to synchronize the

content in any subsequent entry command with a corresponding entry in the directory.

Note that this behaviour only applies to the Stream DUA (or vfload) entry command or

LDIF entry record. It does not apply to the otherwise-equivalent insert command.

The synchronizing behaviour is limited to the duration of the Stream DUA (or vfload)

process. It can be switched off before the process terminates by setting the

synchronization context to “none”. A new synchronization context can be set at any

time (in which case, the previous synchronization context is discarded).

Directory entries to be synchronized are either identified by DN or by a search on their

attribute values. For a search, the subtree component can be used to specify the base

object for the search (if it is not used, the base object is the root).

The components of SynchronizationContext are as follows:

subtree Specifies the base object for a search (if unused, the base object is

the root).

types Lists the attribute types to be synchronized regardless of the object

class of an input entry.

classes Provides additional information for synchronizing entries of specific

structural object classes. However, any entry specified in the input

will be synchronized even if its structural object class is not listed by

this component.

If the classes component is used, an input entry should contain

either an objectClass or structuralObjectClass attribute.

timestamp If the timestamp component is present, a synchronized entry will
have the value of its synchronizationTimestamp attribute set to

the value of this component.

The value of the timestamp component has no particular relevance,

although setting it to a value close to the current time makes sense.

If synchronization is performed over multiple runs of the Stream DUA

(or vfload), each run should use the same value for the timestamp

component. Likewise, if a run is repeated after fixing errors, the

same value for the timestamp component should be used.

In typical use, any entries that have a different
synchronizationTimestamp value will be deleted by a

subsequent filtered delete subtree command (see synchronization

on page 201). The reason for this is that any entry that has a
synchronizationTimestamp value is being synchronized from

an external source. However, if the value hasn't been updated to the

current timestamp, then a record corresponding to that entry no

longer appears in the external source data (it has been deleted).

The synchronizationTimestamp attribute is a predefined, built-

in operational attribute permitted in any entry.

group If the group component is present, a synchronized entry will have the
value of its synchronizationGroup attribute set to the value of

this component.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

200 Appendix A: Stream DUA

The group component is provided for situations where disjoint

collections of directory entries are:

• synchronized from multiple, independent sources; and

• the collections cannot be easily distinguished from each other by

a filtered delete subtree command (for example, because they

appear in the same subtree and use the same object classes).

The synchronizationGroup attribute is a predefined, built-in

operational attribute permitted in any entry.

SynchronizationClass

The SynchronizationClass ASN.1 type is defined as follows:

SynchronizedClass ::= SEQUENCE {

 structuralObjectClass [0] OBJECT-CLASS.&id,

 types [1] SEQUENCE OF AttributeType OPTIONAL,

 identifiers [2] SEQUENCE OF AttributeType OPTIONAL,

 nameAuthority [3] NameAuthority OPTIONAL,

 newEntryPermitted [4] BOOLEAN DEFAULT TRUE,

 newEntryTypes [5] SEQUENCE OF AttributeType OPTIONAL

}

NameAuthority ::= ENUMERATED {

 none,

 onlyRDN,

 fullDN

}

The components are as follows:

structural

ObjectClass

A SynchronizedClass instance applies to entries with the

structural object class identified by the
structuralObjectClass component.

There can be a maximum of one SynchronizedClass instance

for each structural object class.

types This component lists the attribute types to be synchronized. They

are in addition to the attribute types specified by the types
component of the enclosing SynchronizationContext

instance.

If an attribute type in an input entry is not listed in either of the

types components, it is ignored.

identifiers If the identifiers component is absent or empty, an entry in the

input is synchronized with the entry in the directory with the same

DN. If no entry exists with the same DN, the entry in the input is
added to the directory (unless the newEntryPermitted

component is present and set to FALSE).

This is also the default behaviour for an entry whose structural
object class does not have a SynchronizedClass instance.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 201

newEntryTypes This component lists additional attribute types from the input entry

that are to be included when a new entry is added. It is ignored
when the newEntryPermitted component is present and set to

FALSE.

The objectClass attribute and any identifier attributes are

automatically included in a new entry.

nameAuthority This component only applies if the identifiers component is present

and is not empty.

If a matching entry is found in the directory and the value of the
nameAuthority component is:

• none (or the nameAuthority component is absent) – the DN of

the entry in the directory is preserved.

• onlyRDN – the RDN of the entry in the directory is changed to

the RDN of the entry in the input. (The entry in the directory

retains its superior entry.)

• fullDN – the entry in the directory is moved and renamed so

that it has the DN of the entry in the input.

The synchronization procedure does not have the functionality to

avoid conflicts when entries are moved and renamed. These

conflicts produce errors that have to be fixed by editing and

rerunning the input.

synchronization example

The following is an example of the first step when synchronizing a directory with a

collection of entries:

set synchronization context

 {

 subtree {

 organizationName "Deltawing"

 },

 types {

 objectClass

 },

 classes {

 {

 structuralObjectClass organizationalUnit,

 types {

 organizationalUnitName,

 telephoneNumber

 }

 },

 {

 structuralObjectClass organizationalPerson,

 types {

 commonName,

 surname,

 title,

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

202 Appendix A: Stream DUA

 telephoneNumber,

 employeeNumber

 },

 identifiers {

 employeeNumber

 },

 nameAuthority fullDN

 }

 },

 timestamp "20080101120000"

 }

;

The next step is to delete all entries with a synchronizationTimestamp attribute

that does not match the value of the timestamp component in the

SynchronizationContext instance.

The delete subtree command can include a search filter to delete a subset of entries

in a subtree. The extended BNF for delete command is as follows:

delete = "delete" ["subset" filter ["from"]]

["subtree"] name [content] [options] ";"

The obsolete synchronized entries can be deleted using the filtered subtree delete

command. For example:

delete

 subset (synchronizationTimestamp present and

 not synchronizationTimestamp = "20080101120000")

 from subtree { organizationName "Deltawing" }

;

The above example tests for the presence of the synchronizationTimestamp

attribute. This is necessary because an entry without a

synchronizationTimestamp attribute will satisfy the ‘not’ filter item.

The delete subtree command can take an arbitrary filter, which is useful when there

are multiple independent input sources. For example, consider a directory that

includes staff entries synchronized from an independent HR database. This same

directory includes other kinds of entries that are also synchronized, but from another

source.

In this example scenario, the delete subtree command might be as follows:

delete

 subset (objectClass = organizationalperson and

 synchronizationTimestamp present and

 not synchronizationTimestamp = "20080101120000")

 from subtree { organizationName "Deltawing" } ;

If the same staff entries were drawn from multiple external sources, then the group

component of the SynchronizationContext instance could be used. The delete

subtree command might be as follows:

delete

 subset (synchronizationGroup = "HR Staff Records" and

 not synchronizationTimestamp = "20080101120000")

 from subtree { organizationName "Deltawing" }

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 203

;

In this example, the test for the presence of the synchronizationTimestamp

attribute is unnecessary. This is because any entry that has the required value for

synchronizationGroup will also have a synchronizationTimestamp attribute.

synchronization notes

Note that the Stream DUA also takes notice of any values of schema publication

attributes that may be used in update operations, or that are returned in the results of

read and search operations.

Also note that the dump operation places a suitable set command at the start of each

dib.* file.

show

Displays the current setting for prefix, search, options, username or protocol.

It is most useful in interactive mode.

show = “show” (“prefix” | “search”

 | “options” | “username”

 | “protocol”) “;”

For example: show prefix;

source

Transfers the source of the command input from the current source to the named file.

source = “source” path “;”

The path is the name of a file from which to read commands; it must be enclosed in

quotes. Commands are processed until an end of file or an exit or quit command,

the processing resumes with the current input source. The source command can be

nested.

unbind

Unbinds the Stream DUA from the DSA.

unbind = “unbind” “;”

The unbind command is performed implicitly prior to a bind, exit or quit

command, but can also be given explicitly. It is not an error to request this operation if

Stream DUA is already unbound.

userlist

Displays information about all currently bound users of the DSA.

userlist = “userlist” “;”

verify

Requests the DSA to verify its database integrity. The DSA performs a number of

integrity checks on its database, and reports problems to its error log, as well as a

success or failure message to the Stream DUA.

verify = “verify” “;”

With large a database this command can take a long time to complete.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

204 Appendix A: Stream DUA

xldap-add

Inserts a new entry into the database using the XLDAP protocol.

xldap-add = “xldap” “add” name

 [xldap-content]

 [xldap-controls] “;”

The name is the full DN for the new entry.

The list of attributes given by the content argument should include the object class

of the entry. For object classes that are subclasses of other classes, all object classes

below top need to be given.

xldap-add example
xldap add {

 organizationName “Deltawing”

 / commonName “James Clarke”

}

with {

 objectClass organizationalPerson person,

 surname "Clarke",

 givenName “James”,

 userName “jclarke”,

 userPassword “testpass”

}

controls {

 {

 controlType { 1 3 6 1 4 1 42 2 27 8 5 1 },

 criticality FALSE

 }

};

This example adds a new organizational person, James Clarke, to the DIT and

supplies attribute values for the objectClass, surname, givenName,

userName and userPassword. It contains a Password Policy Control (see

Chapter 6).

xldap-compare

Tests for a given value in an entry using the XLDAP protocol.

xldap-compare = “xldap” “compare” name “to” ldap-type “=” value

 [xldap-controls] “;”

The name is the full DN for the entry to be compared. Either true or false is

returned according to whether the entry has or does not have an attribute of the given

type with the given value.

For example:

xldap compare {

 organizationName “Deltawing”

 / commonName “Fred Smith”

}

to

 userPassword = '414243444546'H

;

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 205

This compares the userPassword in the entry { organizationName

“Deltawing” / commonName “Fred Smith” } with the supplied value

'414243444546'H (that is, "ABCDEF"), returning true if the password matches.

xldap-delete

Removes an entry from the database using the XLDAP protocol.

xldap-delete = “xldap” “delete” name

 [xldap-content]

 [xldap-controls] “;”

The name is the full DN of the entry to be deleted. Only entries with no subordinates

may be deleted.

For example:

xldap delete {

 organizationName “Deltawing”

 / organizationalUnit “Finance”

}

;

This example will remove the organizational unit “Finance” if it exists and does not

have any subordinates.

xldap-modify

Modifies the named entry using the XLDAP protocol. The modifications are performed

in the order listed in the request.

xldap-modify = “xldap” “modify” name

 [xldap-changes]

 [xldap-controls] “;”

The name is the full DN of the entry to be modified.

xldap-changes = [“with”] “changes” “{”

 [xldap-change

 { “,” xldap-change }]

 “}”

xldap-change = change-add

 | change-delvals

 | change-delatt

 | change-replace

change-add = “add” (“attribute” | “values”)

 ldap-type { value }

change-delvals = “delete” “values” ldap-type { value }

change-delatt = “delete” “attribute” ldap-type { value }

change-replace = “replace” ldap-type

 [old-values]

 [“add” { value }]

old-values = “(” “delete” { value } “)”

Each xldap-change is applied to the entry in turn. The four alternatives are:

• change-add adds the attribute of the specified type if it doesn’t already exist in the

entry, otherwise it adds the listed values to the existing attribute. The choice of

keyword, either “attribute” or “values”, carries no significance.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

206 Appendix A: Stream DUA

• change-delvals removes only the listed values from the attribute of the specified

type. If no values are listed, the change is ignored.

• change-delatt removes the attribute of the specified type. The values of the

removed attribute may be listed but are ignored by Stream DUA. This facility is

provided to allow reversal of the change recorded in the Stream DUA format update

logs.

• change-replace removes all the current values of the attribute of the specified

type then adds the listed values, if any. It is equivalent to a change-delatt

followed by a change-add for the same attribute type. The removed values may

be listed with old-values but these are ignored by Stream DUA. This facility is

provided to allow reversal of the change recorded in the Stream DUA format update

logs.

xldap-modify example:
xldap modify {

 organizationName “Deltawing”

 / commonName “Fred Smith”

}

with changes {

 remove values telephoneNumber "(03)543 2109",

 add values telephoneNumber "(03)543 9012",

 add attribute employeeNumber "1234" "9822"

};

This example modifies the entry { organizationName “Deltawing” /

commonName “Fred Smith” }, modifying the value of telephoneNumber and

adding two new values of employeeNumber. Note that the cn (commonName)

attribute value Fred Smith may not be modified with this command: you must use a

rename command (for example, xldap-rename).

xldap-move

Moves entries (and any subordinates) to a new position in the DIT using the XLDAP

protocol.

xldap-move = “xldap” “move” name “to” name

 [delete-old] [xldap-controls] “;”

The first name is the full DN of the entry to be moved. The second name is the new

name for the entry after the move.

For example:

xldap move {

 organizationName “Deltawing”

 / organizationalUnit “Finance”

 / commonName “Fred Smith”

}

to {

 organizationName “Deltawing”

 / organizationalUnit “Marketing”

 / commonName “Fred Smith”

};

This moves the entry Fred Smith so that it becomes a subordinate of the entry {

organizationName “Deltawing” / organizationalUnit “Marketing” }.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 207

xldap-rename

Renames entries using the XLDAP protocol. It has the effect of only changing an

entry's RDN and not its position in the directory tree. It is a special case of the xldap-

move command .

xldap-rename = “xldap” “rename” name

 “to” “(“ rdn “)”

 [delete-old]

 [xldap-controls] “;”

The name is the full DN of the entry to be renamed. The rdn is the new (last) RDN of

the entry.

xldap-rename example
xldap rename {

 organizationName “Deltawing”

 / commonName “Fred Smith”

}

to (commonName “Fred R. Smith”)

delete old

;

This renames the entry Fred Smith to the new name Fred R. Smith, deleting the

old value from the cn (commonName) attribute.

xldap-search

Performs a search on the database.

xldap-search = “xldap” “search” name

 search-arguments

 [xldap-controls] “;”

search-arguments = [scope]

 [“and” xldap-aliases]

 “for” xldap-filter

 [ldap-selection] limits

xldap-aliases = “neverDerefAliases”

 | “derefInSearching”

 | “derefFindingBaseObj”

 | “derefAlways”

The name is the DN for the base entry at which to begin the search.

The xldap-aliases argument can be used to specify whether or not aliases in the

search subtree and/or the base entry name are dereferenced. Aliases in the search

subtree are dereferenced if derefInSearching or derefAlways is specified,

otherwise they are not dereferenced. Aliases are dereferenced in locating the base

entry if derefFindingBaseObj or derefAlways is specified, otherwise they are

not dereferenced. The default, if xldap-aliases is not specified, is derefAlways.

The keyword "for" introduces a filter to apply to the search. An xldap-filter is a

Boolean expression of xldap-filter-item. The "not" operator has highest

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

208 Appendix A: Stream DUA

precedence, followed by "and", then "or". Parentheses may be used to alter the

order of evaluation.

xldap-filter = “(” xldap-filter “)”

 | xldap-filter-item [“dnatt”]

 | “not” xldap-filter

 | xldap-filter “and” xldap-filter

 | xldap-filter “or” xldap-filter

A xldap-filter-item is an assertion about the attribute values belonging to an

entry. The keyword “dnatt” specifies that the assertion applies to the attribute

values of the entry’s DN in addition to the normal attribute values.

xldap-filter-item = ldap-type “=” value

 | ldap-type “~=” value

 | ldap-type “>=” value

 | ldap-type “<=” value

 | ldap-type “present”

 | ldap-type “*=” xldap-substrings

 | xldap-ext-match

xldap-ext-match = ldap-type [“using” xldap-rule] “matches” value

 | “*” “using” xldap-rule “matches” value

xldap-substrings = [value] “*”

 { value “*” }

 [value]

The values of the specified attribute type are tested for being equal to (“=”),

approximately equal to (“~=”), greater than or equal to (“>=”) or less than or equal to

(“<=”) the specified test value.

The keyword “present” tests for the existence of the specified attribute type. A

substring search can be obtained by using one or more wildcards (“*”, which will

match zero or more characters) to separate a group of values for an equality match.

An extensible match can be obtained using the using xldap-ext-match form.

xldap-rule = rulename | object-identifier

A rulename is a string identifying a matching rule, usually the same as the matching

rule’s conventional ASN.1 name. Names for the standard matching rules are built in

(see Appendix B) and are case insensitive. The rule may also be identified by an

object-identifier in modified ASN.1 value notation.

A size or time limit may be imposed on the search request with the limits argument.

limits = [size-limit] [time-limit]

size-limit = “sizeLimit” “=” number

time-limit = “timeLimit” “=” number

xldap-search example
xldap search {

 organizationName “Deltawing”

}

for sn ~= "smith" and

 not (givenName = "B" * or givenName = * "t")

return { sn givenName telephoneNumber };

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 209

This searches the subtree headed by { organizationName “Deltawing" } for

all entries having sn (surname) approximately matching smith and givenName not

starting with 'B' or ending in 't'. The attributes surname, givenName and

telephoneNumber are returned for the matching entries.

Stream DUA notation

This appendix describes the following aspects of the Stream DUA:

• ASN.1 value notation

• Input language notation and common arguments

• Service controls

ASN.1 value notation

The Stream DUA uses a data specification language used extensively in the X.500

Recommendations called ASN.1 (Abstract Syntax Notation 1). ASN.1 is suitable for

specifying complex data types (for example, attribute syntaxes) and their values.

Stream DUA uses ASN.1 to specify attribute values and the options argument.

ASN.1 type and value notation is described in ITU Recommendation X.680, and it is

illustrated by examples in this chapter.

Note the following:

• A value of a SEQUENCE or SET is a list of the component values enclosed in

braces.

• A value of a BIT STRING is a list of the named bits enclosed in braces.

• The identifier is always required for each component of a SEQUENCE or SET, or

for the actual chosen alternative within a CHOICE.

• There must be a colon between the identifier of an alternative of a CHOICE and its

value.

• The XML Enabled Directory specification defines an ASN.1 type, AnyType, the

values of which are able to hold arbitrary content of XML elements (see draft-legg-

xed-glue-xx.txt). Values of AnyType are represented by SDAU in ASN.1 value

notation according to the ASN.1 type definition of AnyType (a CHOICE of a

SEQUENCE) which tends to obscure the XML content. However, the

representation of AnyType values in ELDIF, which sdua also accepts, is much

closer to the original XML notation.

Stream DUA format

The Stream DUA accepts some modifications to standard ASN.1 value notation to

simplify its use as an input/output language for the directory. In particular, a different

notation is optionally used for values of restricted string types (for example,

PrintableString, TeletexString), and values of type OCTET STRING,

DirectoryString, ORAddress, and ORName, and must be used for values of type

DistinguishedName. The special notation for these syntaxes is described below,

together with examples of many of the attribute syntaxes supported by ViewDS.

In addition, two special formats are available for representing syntaxes which are

unknown to Stream DUA, or which represent values which are to be hidden from

human users. These formats are best illustrated by example:

BER:'130421222324'H # BER encoding of the PrintableString "1234"

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

210 Appendix A: Stream DUA

ENCRYPTED:'5415D9CB40F65D893C1BB21C91B177ED'H

 # a value hidden from human users

The ENCRYPTED form is used by the DSA when dumping directory data that contains

values of the userPassword attribute, in order to prevent disclosure of the actual

value. The DSA and Stream DUA must both use the same encryption key.

BIT STRING

A BIT STRING value can be given in binary or hexadecimal notation, but can usually

be given using named bits as a comma-separated list in braces.

'00110000'B # using binary notation

{dapProtocol, dspProtocol} # using named bits

BOOLEAN

A BOOLEAN value is given as TRUE or FALSE.

DistinguishedName

A DistinguishedName value must be given as a name enclosed in braces. The

syntax for name is described later in this chapter.

{ # shorthand format

 organizationName "Deltawing"

 / organizationalUnit "Deltawing InfoSystems"

}

{ # sdua output format

 organizationName "Deltawing"

 / organizationalUnitName "Deltawing InfoSystems"

}

DirectoryString

A value of type DirectoryString may be represented as a value of type

PrintableString, TeletexString, BMPString, UniversalString or

UTF8String (that is, the CHOICE tag printableString:, teletexString:,

bmpString:, universalString: or uTF8String: can be omitted).

On input it will be automatically converted to a DirectoryString according to the

following algorithm:

• If the string contains characters other than UNICODE characters, it is a

UniversalString.

• Otherwise if the string contains characters other than Latin1 (ISO 8859-1)

characters, it is a BMPString.

• Otherwise if the string contains characters other than Printable characters it is a

TeletexString.

• Otherwise it is a PrintableString.

On output by Stream DUA or from a DSA dump, the tags are omitted if they can be

reconstructed exactly by the above algorithm.

Therefore:

• A PrintableString is always dumped without a tag.

• A TeletexString is dumped without a tag if it contains any non-printable string

characters and no non-Latin1 characters.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 211

• A BMPString is dumped without a tag if it contains any non-Latin1 characters and

no non-UNICODE characters.

• A UniversalString is dumped without a tag if it contains any non-UNICODE

characters.

Examples:

"Mr Fred Smith" # DirectoryString with an implicit CHOICE

teletexString: "ABCDEF" # DirectoryString with an explicit CHOICE

ENUMERATED

An ENUMERATED value can be given as an integer, but is usually given as a named

integer. Just specify the integer value’s name:

nssr

FacsimileTelephoneNumber

A FacsimileTelephoneNumber value consists of a printable string containing a

telephone number in international (E.123) format followed by an optional BIT

STRING giving Group 3 fax non-basic parameters. The latter string is generally

omitted, but its possible presence requires a more complex syntax for Facsimile-

TelephoneNumber.

{

 telephoneNumber "+1-212-667-9801"

}

Note that the telephoneNumber attribute also requires the number to be given in

E.123 format. However, ViewDS does not enforce this in either case.

GeneralizedTime

A GeneralizedTime value specifies either a local time or a coordinated universal

time (UTC) as a string in ISO 8601 format. It has three forms: (a) local time, (b) UTC

time, (c) local time with indicated offset from UTC time. Timestamps generated by

ViewDS always use format (c).

Note that the seconds or minutes and seconds digits may be omitted, and that a

decimal point and fractional seconds may be given after the integral seconds digits.

"19951106210627" # (a): local time 9:06:27 p.m. 6 Nov 1995

"19951106210627Z" # (b): UTC time 9:06:27 p.m. 6 Nov 1995

"19951106210627+1000" # (c): local time 9:06:27 p.m. 6 Nov 1995

 # with local time 10 hours ahead of UTC

OBJECT IDENTIFIER

An OBJECT IDENTIFIER value can be given as a list of OID components in braces,

or as a symbolic name (provided the name is known to Stream DUA):

{2 5 4 3}

commonName

OCTET STRING

An OCTET STRING value may be given in hexadecimal notation, or it if contains only

ASCII printable characters (space through tilde), may alternatively be given as a

quoted string:

'414243444546'H # OCTET STRING in hexadecimal notation

"ABCDEF" # OCTET STRING as a quoted string

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

212 Appendix A: Stream DUA

ORAddress

An ORAddress value may be given using standard ASN.1 value notation, or

alternatively as a TeletexString whose value is the address converted to a string

in accordance with X.402 (1995) Annex F.

{ # standard ASN.1 value notation

 standard-attributes {

 admd-name printable:"Telememo",

 prmd-name printable:"Delta Auto",

 organization-name "Deltawing",

 personal-name {

 surname "Smith",

 given-name "Marie"

 },

 org-unit-names {

 "Delta Automotive"

 }

 }

}

"G=Marie; S=Smith; OU=Delta Automotive; O=Deltawing; " +

 "P=Delta Auto; A=Telememo"

 # as a string in X.402 Annex F

format

The X.402 Annex F format permits the attributes to be given in any order, and permits

either ; or / to be used as a delimiter between attributes.

ORName

An ORName value consists of an ORAddress with an optional DistinguishedName

added as the last value of the SEQUENCE. It may optionally be given as an X.402

Annex F format TeletexString followed by a DistinguishedName value.

For example:

{

 "G=Marie; S=Smith; OU=Delta Automotive; O=Deltawing; " +

 "P=Delta Auto; A=Telememo",

 {

 organizationName "Deltawing"

 / organizationalUnitName "Deltawing Automotive Ltd."

 / organizationalUnitName "Sales"

 / commonName "Marie Smith"

 }

}

PostalAddress

A PostalAddress value is a sequence of up to six strings of no more than 30

characters each:

{

 "GPO Box 8",

 "Melbourne",

 "Victoria 3000"

}

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 213

Restricted String Types

A value of a restricted string type (for example,, PrintableString, IA5String,

TeletexString, BMPString, UniversalString or UTF8String) is

represented as a sequence of one or more juxtaposed substrings separated by '+'

signs. The substrings are concatenated to form a single string.

Each substring must fit wholly onto a single line and is one of the following:

• A sequence of characters in the local code page (currently ISO Latin1 (ISO 8859-

1)) enclosed in matching quotes, any of ', " or `. If the string contains a quote of the

same type as the enclosing quotes then the embedded quote must be escaped by

duplicating it in the string.

• One of the named characters lf (representing 10, a line feed) or cr (representing

13, carriage return).

• A sequence of hexadecimal characters enclosed in single quotes (') followed by

one of H, T61, BMP or UCS. The hexadecimal characters specify one or more

characters of the string in the local code page (H), in the T.61 character set (T61),

in the BMP character set (BMP) or in the UCS character set (UCS). In the case of

T.61, 4 hex characters are required for each actual character, the first two

specifying the code set, and the final two the position in the code set. In the case of

BMP, 4 hex characters are again required for each actual character and specify the

16-bit BMP value of the character. In the case of UCS, 8 hex characters are

required for each actual character and specify the 32-bit UCS value of the

character.

Note that the characters allowed for a PrintableString are A-Z, a-z, 0-9, space,

plus the following: '()+,-./:=?

Examples:

'Mr Fred O''Hara'

"Marketing Manager for Mel" # String split over two lines

 + "bourne region"

"hello" + lf + "there" # String with embedded linefeed

teletexString:"ABCDEF" # DirectoryString of type TeletexString

"ABC" + '2345'BMP # BMPString of 4 chars, last is '2345'

Note that Access Presence uses a different representation for characters that cannot

be represented in the local-code page. Such a character is represented in-line using

an escape notation: a backslash followed by the 4 hexadecimal digits of its Unicode

representation. A genuine backslash and the concatenation character for multi-valued

attributes of that type are also escaped with a backslash if they occur in the string.

Open Type

The governing type and colon for a value of an ASN.1 open type are always omitted.

An attribute value embedded in an access control item is an example of an open type.

In such a case, the attribute value is represented in the usual way for Stream DUA

without any need to identify the governing ASN.1 type.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

214 Appendix A: Stream DUA

Input language notation and common arguments

Input to the Stream DUA is a sequence of commands, each terminated by a

semicolon (except for quit and exit). Spaces, tabs, and newlines are not

significant.

The language accepted by Stream DUA is defined using extended Backus-Naur

Form:

| separates alternative expressions,

() groups the enclosed expressions,

{} means zero, one or more repetitions of the enclosed expression and

[] means the enclosed expression is optional.

Literal text (for example, a keyword in the language) is surrounded by double quotes.

Any text following a ‘#’ up to the end of the line is treated as a comment and ignored.

At the top level, the Stream DUA input language is described by the following BNF:

input = { command }

command = dap-request | admin-request | ldap-request | dua-command

dap-request = bind | compare | insert | list | modify | move | read |

 rename | delete | search | unbind

admin-request = add | checkpoint | display | dsa | dump | empty | fill

 | remove | save | userlist | verify

ldap-request = ldap-add | ldap-compare | ldap-delete | ldap-modify |

 ldap-move | ldap-rename | ldap-search

xldap-request = xldap-add | xldap-compare | xldap-delete |

 xldap-modify | xldap-move | xldap-rename | xldap-search

dua-command = assign | encode | exit | quit | register |

 set | show | source

These commands are described below.

Common command arguments

Arguments common to two or more Stream DUA commands are described below.

type

The type argument specifies a single attribute type.

type = typename | object-identifier

A typename is a string identifying the attribute, usually the same as the attribute’s

conventional ASN.1 name. Type names for the standard attributes are built in (see

Appendix B). The synonyms C, O, OU, CN, S for countryName, organizationName,

organizationalUnitName, commonName, and surname are also built in.

Typenames for user-defined attributes are taken from the name component of the

attribute’s attributeTypes value (any of the names may be used). sdua reads

these in response to a set command. Type names are case insensitive.

An object-identifier is represented using ASN.1 value notation, i.e. as a

sequence of integers enclosed in braces (see Chapter 4).

Examples:

organizationName

OU

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 215

commonName

{ 2 5 4 4 }

selection

The selection argument specifies the attribute types to be returned in the result of

a read or search command.

selection = “return” [category]

 [“types” [“only”]]

 [types]

category = all | user | operational

all = “all”

user = “all” “user”

operational = “all” “operational”

types = “{” { type } “}”

If the selection argument is omitted or user is specified then all user attributes of

the entry are returned. If operational is specified, all operational attributes are

returned. If all is specified then all user and operational attributes are returned.

The implied attribute types selected by category can be augmented with a specific

list of attribute types, between braces and separated by white-space.

If category is absent, and types is absent or is an empty list of attribute types, then

no attributes are returned.

The selection can also include the keywords “types” “only” which results in

the attribute types only (that is, no values) being returned.

For example, to return the attributes manager, modifyTimestamp and

updatersName:

return { manager modifyTimestamp updatersName }

To return all attributes, including operational attributes such as modifyTimestamp

and updatersName:

return all

To return all user attribute types in the entry, but no attribute values and no

operational attribute types:

return all user types only

This specifies that no attributes are to be returned:

return { }

ldap-selection

The ldap-selection argument specifies the attribute types to be returned in the

result of an ldap-search or xldap-search command.

ldap-selection = “return” [category]

 [“types” [“only”]]

 [types]

category = all | user | operational

all = “all”

user = “all” “user”

operational = “all” “operational”

types = “{” { ldap-type } “}”

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

216 Appendix A: Stream DUA

If the ldap-selection argument is omitted or user is specified then all user

attributes of the entry are returned. If operational is specified, all operational

attributes are returned. If all is specified then all user and operational attributes are

returned.

The implied attribute types selected by category can be augmented with a specific

list of attribute types, between braces and separated by white-space.

If category is absent, and types is absent or is an empty list of attribute types, then

no attributes are returned.

The selection can also include the keywords “types” “only” which results in

the attribute types only (that is, no values) being returned.

Examples

To return the attributes userCertificate;binary and modifyTimestamp:

return { ”userCertificate;binary” modifyTimestamp }

To return all attributes including operational attributes:

return all

To return all user attribute types in the entry, but no attribute values and no

operational attribute types:

return all user types only

To specify that no attributes are to be returned:

return { }

octet-string

An octet-string argument is an arbitrary string of 8-bit octets presented in the

same form as the modified ASN.1 value notation for a value of the OCTET STRING

syntax.

For example:

'414243444546'H

value

A value is an attribute or assertion value.

value = asn1value | ber | from

ber = “BER” “:” octet-string

from = “FROM” [“BER” “:”] path

A value is typically expressed using modified ASN.1 value notation (see above). The

ber notation may be used to express the value in the hexadecimal representation of

its BER encoding.

If the attribute or assertion syntax is OCTET STRING, BIT STRING, UTF8String,

Audio, Fax or JPEG, then optionally, values may be taken from an external file using

the from notation, where path specifies a filename relative to the current working

directory, and the attribute value is taken to be the entire contents of the file with that

name. For syntaxes other than OCTET STRING, BIT STRING, UTF8String, Audio,

Fax or JPEG, the “BER” keyword is used in the from notation to indicate that the file

content is the BER encoding of the value according to its attribute syntax.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 217

NOTE: The syntax of the value must agree with that specified in the attribute definition. The

attribute syntax of built-in attributes can be determined from the file

${VFHOME}/setup/schema.defs. The attribute syntax of user-defined attributes

depends on the user’s specification – see Chapter 4.

attribute

An attribute contains an attribute type and a list of one or more attribute values

separated by white-space.

attribute = type value { value }

For examples:

telephoneNumber "+61 3 253 1234" "13 2200"

photo FROM "fred.jpg"

userCertificate FROM BER:"fred.cer"

rdn

An rdn (Relative Distinguished Name) is a sequence of one or more attribute type

and value pairs separated by white-space.

rdn = type value { type value }

For example:

organizationName "Deltawing"

name

A distinguished Name is a sequence of zero, one or more RDNs each separated by a

slash, the sequence itself optionally starting with a slash, enclosed in braces.

name = “{” [rdn] { “/” rdn } “}”

Names beginning with a slash (after the left brace) are absolute names (relative to the

DIT root). Names without an initial slash are relative to the prefix which was set with

the set (set-prefix) command. The absolute name of the DIT root is a single

slash, i.e. {/}; its relative name relative to a prefix which is the DIT root is an empty

string between the braces, i.e. { }.

NOTE: Initially the prefix is the DIT root, so there is no difference between names beginning

with an initial slash and ones without an initial slash. The set (set-prefix)

command is most useful when sdua is used in interactive mode.

For example:

{ organizationName "Deltawing" / organizationalUnit “Deltawing

InfoSystems" }

content

The content argument specifies a comma separated list of attributes.

content = “with” “{“

 [attribute { “,” attribute }]

 “}”

path

The path argument is a string of characters enclosed in double quote characters

specifying the path to a file. If a relative path is specified, it is determined relative to

the file system directory sdua was started in.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

218 Appendix A: Stream DUA

output

The output argument specifies a file to receive the result of a read, list or

search command.

output = “into” path

options

Specifies a value for the CommonArguments item from the Directory Access Protocol.

options = “options” options-expr

options-expr = asn1value | parameter { parameter }

parameter = param [“=” option-value]

option-value = on | off | number

on = “1” | “on” | “true”

off = “0” | “off” | “false”

The options argument is mostly used to supply a value for the serviceControls

component of CommonArguments (see next section). This component has syntax

ServiceControls, and appears as the first member of the CommonArguments

SET, all other members of that SET being optional. An asn1value for options can

therefore be specified by providing a value for serviceControls and enclosing it in

an additional pair of braces. Be careful not to confuse it with the options field within

serviceControls.

For example:

{ serviceControls {

 options {localScope},

 timeLimit 2,

 sizeLimit 30

 }

}

To simplify the setting of the serviceControls in options, any of the following

keywords may be used as param:

preferChaining

chainingProhibited

localScope

dontUseCopy

dontDereferenceAliases

subentries

copyShallDo

manageDSAIT

priority

timeLimit

sizeLimit

scopeOfReferral

attributeSizeLimit

schemaChecking

The first eight of these parameters may take an option-value of on or off. If no

option-value is provided then on is assumed. The next five parameters must have

an option-value and expect it to be an integer number.

And the last parameter:

SchemaChecking ::= ENUMERATED {

 none,

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 219

 ignoreUserModifiableFlag,

 all

}

The setting of options using asn1value results in all existing settings being replaced

with the new commonArguments. The param settings will only affect the indicated

field in the current commonArguments.

string

The string argument is an arbitrary string of characters enclosed in double quote

characters ("). Double-quote characters that appear in the string itself are escaped by

being repeated.

Examples:

"This is a string."

"This string has a quoted dollar sign ""$""."

password

A password is a quoted character string representing a user’s password.

password = string

protocol

protocol = “dap” | “admin”

The protocol may be defined as either “dap” for the DAP Protocol or “admin” for

the DAP Admin Protocol.

username

The username argument identifies a user of the directory service.

username = name | string

The username may be specified as a DN using the name alternative or as a

character string enclosed in double quote characters. If the second option is used,

sdua will use the string to carry out a getMyDN search to determine the DN to use in

the bind. The getMyDN search is carried out during processing of the bind command.

delete-old

The delete-old argument is used by the move, rename, ldap-move, ldap-

rename, xldap-move and xldap-rename commands.

delete-old = “delete” “old”

If delete-old is specified and the last RDN of the new name is different from the

last RDN of the old name, the entry’s values corresponding to the old RDN are

removed. Otherwise they remain as non-naming attributes in the entry.

ldap-oid

An ldap-oid is an OBJECT IDENTIFIER value in the conventional dotted decimal

representation for LDAP, surrounded by double quotes.

For example:

"2.5.13.0"

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

220 Appendix A: Stream DUA

controls

The controls argument specifies a list of LDAP controls for any of the ldap-

request commands.

controls = “controls” [control { “,” control }]

control = “{“ “controlType” ldap-oid

 [criticality]

 [control-value] “}”

criticality = “,” “criticality”

 (“TRUE” | “FALSE”)

control-value = “,” “controlValue” octet-string

scope

The scope argument specifies which entries are searched by a search, ldap-

search or xldap-search command.

scope = “only” | “one” “level”

If the scope is omitted, the whole of the subtree below the entry named in the

search, ldap-search or xldap-search command is searched. The keyword

“only” restricts the search to the named entry itself while the keywords “one”

“level” restrict the search to the subordinates of the named entry. A search for the

entry only is similar to the read command, and a one level search is similar to the

list command.

ldap-type

The ldap-type argument specifies a single attribute description in an LDAP

operation.

ldap-type = type | string

An attribute type without an LDAP attribute option can be represented by a type

argument. An attribute type with attribute options must be surrounded by double

quotes. The attribute options are separated by semicolons. An attribute type

represented as an LDAP dotted decimal object identifier must also be surrounded by

double quotes.

Examples:

commonName

cn

{ 2 5 4 3 }

"cn;binary"

"2.5.4.3"

ldap-value

An ldap-value is an attribute or assertion value in the LDAP protocol.

ldap-value = string | octet-string | value |“FROM” path

Values in the LDAP protocol usually appear as human-readable character strings.

If the value belongs to a human-readable syntax in LDAP, then it can be represented

as a quoted character string. If the value belongs to an unreadable syntax in LDAP,

then it is represented as an octet-string.

Values using the LDAP binary encoding are represented in the usual format for an

sdua value. An LDAP value may be taken from an external file using the “FROM”

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 221

notation, where path specifies a filename relative to the current working directory,

and the value is taken to be the entire contents of the file with that name. This final

alternative is particularly useful when the LDAP value contains line breaks (for

example, if it is an XML document).

ldap-content

The ldap-content argument specifies a list of attributes.

ldap-content = “with” “{”

 [ldap-attribute

 { “,” ldap-attribute }] “}”

ldap-attribute = ldap-type ldap-value

 { ldap-value }

An ldap-attribute contains an attribute description specifying the attribute type

and a list of one or more attribute values separated by white-space.

Examples:

telephoneNumber "+61 3 253 1234" "13 2200",

postalAddress "250 Bay Street$Brighton$Victoria"

"postalAddress;binary" {

 "250 Bay Street",

 "Brighton",

 "Victoria" }

"userCertificate;binary" FROM BER:"fred.cer"

ldapdn

An ldapdn is the DN of an entry in an ldap-request.

ldapdn = string | name

An ldapdn can be represented in the conventional character string format for an

LDAP DN, surrounded by quotes (that is, as a string) or in the usual format for a

Stream DUA name.

Examples:

"cn=Fred Smith,o=Deltawing"

{ organizationName "Deltawing" / commonName "Fred Smith" }

xldap-controls

The xldap-controls argument specifies a list of XLDAP controls for any of the

xldap-request commands.

xldap-controls = “controls” “{“ [xldap-control { “,” xldap-control }] “}”

xldap-control = “{“ “controlType” object-identifier

 [criticality]

 [control-value] “}”

criticality = “,” “criticality”

 (“TRUE” | “FALSE”)

control-value = “,” “controlValue” “request:” value

xldap-content

The xldap-content argument specifies a list of attributes.

xldap-content = “with” “{”

 [xldap-attribute

 { “,” xldap-attribute }]

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

222 Appendix A: Stream DUA

 “}”

xldap-attribute = ldap-type value { value }

xldap-attribute contains an attribute type and a list of one or more attribute

values separated by white-space.

Examples:

telephoneNumber "+61 3 253 1234" "13 2200",

postalAddress "250 Bay Street$Brighton$Victoria"

"postalAddress;binary" {

 "250 Bay Street",

 "Brighton",

 "Victoria"

}

"userCertificate;binary" FROM BER:"fred.cer"

{ 2 5 4 12 } “My Title”

Service controls

Most operations sent by Stream DUA to the DSA include service controls (set via the

options argument). Service controls are standard requests to modify the service

which the DSA would otherwise perform.

The ASN.1 definition of ServiceControls is as follows (from X.500).

ServiceControls ::= SET {

 options [0] BIT STRING {

 preferChaining (0),

 chainingProhibited (1),

 localScope (2),

 dontUseCopy (3),

 dontDereferenceAliases (4),

 subentries (5),

 copyShallDo (6),

 manageDSAIT (8) } DEFAULT {},

 priority [1] INTEGER {low(0), medium(1),

 high(2)} DEFAULT medium,

 timeLimit [2] INTEGER OPTIONAL,

 sizeLimit [3] INTEGER OPTIONAL,

 scopeOfReferral [4] INTEGER {dmd(0), country(1)}

 OPTIONAL,

 attributeSizeLimit [5] INTEGER OPTIONAL,

 manageDSAITPlaneRef [6] SEQUENCE {

 dsaName Name,

 agreementID AgreementID }

AgreementID ::= SEQUENCE {

 identifier INTEGER,

 version INTEGER }

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix A: Stream DUA 223

The fields are described below.

preferChaining Not used by ViewDS. ViewDS DSAs always try to chain

unless prevented by either of the next two service controls

(see Chapter 7).

chainingProhibited Requests the DSA not to chain under any circumstances.

localScope Requests the DSA to chain only to DSAs within the ‘local
scope’ (defined in ViewDS using the dsaCollaborators

attribute described in Chapter 3).

dontUseCopy Requests the DSA to ignore replicated copies of an entry

and chain the request to the supplier of the replicated

information instead.

dontDereference

Aliases

Requests the DSA to not to dereference aliases: if the

named entry is an alias entry, it is returned rather than the

entry to which it refers.

copyShallDo Requests the DSA to use replicated copies of entries, even

when it would normally determine the copies to be

unsuitable for evaluation of the request.

manageDSAIT A 1997 extension to X.500 supported by ViewDS. If

asserted, DSA information tree management is enabled.

priority Not used by ViewDS.

timeLimit Specifies the time within which an operation is to be

completed. If the operation cannot be carried out within this

time, the DSA returns a service error.

sizeLimit Specifies the maximum number of entries to be returned. If

this limit is exceeded, the DSA may return some of the

requested entries (up to this limit) or it may return an error.

scopeOfReferral Not used by ViewDS.

attributeSizeLimit Specifies the largest size of any attribute value to be

included in the returned entry information. If an attribute

exceeds this limit, all of its values are omitted from the

returned entry information. See Rec. X.511 | 9594-3

clause 7.6.

manageDSAITPlaneRef A 1997 extension to X.500 supported by ViewDS. It is used

to specify a specific replication plane to act on.

 225

Appendix B

 Supported schema

This chapter specifies the pre-defined schema supported by ViewDS.

Introduction

This chapter specifies selected aspects of the pre-defined schema available in any

ViewDS installation. ViewDS’s schema is highly extensible (only the set of supported

matching rules is fixed).

The pre-defined schema covers all of X.500, all of X.400, and the ViewDS extensions.

It is used when adding initial information to a ViewDS DSA (for example, when setting

up a subschema administrative point entry), and as a cross-check that schema

publication information added by the user for standard schema objects is in fact

correct.

The pre-defined schema is supplied in text format (the GSER encoding of the SET OF

Attribute ASN.1 type) and their file names have the .txt extension. For backward

compatibility purposes, the pre-defined schema is supported in binary format.

The following pre-defined schema is installed with the ViewDS Management Agent:

• ACP133.txt – schema defined in ACP133 edition B.

• ACP133C.txt – schema defined in ACP133 edition C.

• Clearswift.txt – schema defined for Clearswift Directory Bastion test bed.

• Corporate.txt – schema for the Deltawing demonstration directory supplied with

ViewDS.

• NADF.txt – schema defined for North American Directory Forum (NADF) profile.

• RFC1274.txt – using COSINE and Internet X.500 schema.

• RFC2247.txt – using Domains in LDAP/X.500 Distinguished Names.

• RFC2307.txt – an Approach for using LDAP as a Network Information Service.

• RFC2798.txt – definition of the inetOrgPerson LDAP Object Class.

• RFC4523.txt – LDAP Schema Definitions for X.509 Certificates.

• RFC4524.txt – COSINE LDAP/X.500 Schema (obsoletes RFC 1274, updates

RFC 2247 and RFC 2798).

• X.500-Default.txt – standard X.500 schema defined in X.520 and X.521.

• X.509-PKI.txt – standard X.500 schema defined in X.509.

Object identifier prefixes

The object identifiers in the tables that follow are specified as a symbolic prefix and a

numeric suffix. The symbolic prefix represents a sequence of numbers, and the actual

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

226 Appendix B: Supported schema

object identifier is formed by concatenating that sequence with the sequence forming

the numeric suffix. The prefixes are as follows:

Prefix Definition

ds 2 5

mhs 2 6

ldap 1 3 6 1 4 1 1466

vf 1 3 32 0 1

ads 1 2 36 79672281 1

vds 1 3 6 1 4 1 21473 5

sun-at 1 3 6 1 4 1 42 2 27 8 1

Attribute and assertion syntaxes

The ViewDS DSA supports all attribute and assertion syntaxes defined in X.520

(1993) and Annex C of X.402 (1988). It also supports all attribute and assertion

syntaxes for operational attributes defined in X.501, X.509, X.518, and X.525, and a

number of ViewDS-specific attribute and assertion syntaxes.

Attribute syntaxes as used in X.500 (1988) have been superseded for X.500 (1993)

with use of straight ASN.1 in the attribute definitions and the definition of standard

matching rules. The supported attribute and assertion syntaxes are sufficient to

conform with X.520 (1988).

The set of supported attribute and assertion syntaxes is as follows.

Standard syntaxes

The ViewDS DSA supports the following built-in attribute and assertion syntaxes:

Attribute or Assertion syntax Reference

 ASN.1 built-in syntaxes

ANY X.680

BIT STRING X.680

BMPString X.680

BOOLEAN X.680

CHARACTER STRING X.680

EMBEDDED PDV X.680

ENUMERATED X.680

EXTERNAL X.680

GeneralizedTime X.680

GeneralString X.680

GraphicString X.680

IA5String X.680

INTEGER X.680

NULL X.680

NumericString X.680

ObjectDescriptor X.680

OBJECT IDENTIFIER X.680

OCTET STRING X.680

PrintableString X.680

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 227

Attribute or Assertion syntax Reference

REAL X.680

TeletexString X.680

UTCTime X.680

VideotexString X.680

VisibleString X.680

UniversalString X.680

UTF8String X.680

 Directory syntaxes

AccessPoint X.518 Annex A

ACIItem X.501 Annex D

AlgorithmIdentifier X.509 Annex A

AttributeTypeDescription X.501 Annex C

Certificate * X.509 Annex A

CertificateAssertion X.509 Annex A

CertificateExactAssertion X.509 Annex A

CertificateList * X.509 Annex A

CertificateListAssertion X.509 Annex A

CertificateListExactAssertion X.509 Annex A

CertificatePair X.509 Annex A

CertificatePairAssertion X.509 Annex A

CertificatePairExactAssertion X.509 Annex A

ComponentFilter RFC 3687

ConsumerInformation X.501 Annex E

CountryName X.520 Annex A

DestinationIndicator X.520 Annex A

DirectoryString{} X.520 Annex A

DistinguishedName X.501 Annex B

DITContentRuleDescription X.501 Annex C

DITStructureRuleDescription X.501 Annex C

DSEType X.501 Annex E

EnhancedGuide X.520 Annex A

FacsimileTelephoneNumber X.520 Annex A

FamilyEntries X.511 Annex A

Guide X.520 Annex A

InfoSyntax X.509 Annex A

InternationalISDNNumber X.520 Annex A

LDAPSchemaDefintiion RFC 2927

LDAPSyntaxDescription draft-ietf-ldapbis-syntaxes-xx.txt

MasterAndShadowAccessPoints X.525 Annex A

MatchingRuleDescription X.501 Annex C

MatchingRuleUseDescription X.501 Annex C

NameAndOptionalUID X.501 Annex D

NameFormDescription X.501 Annex C

ObjectClassDescription X.501 Annex C

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

228 Appendix B: Supported schema

Attribute or Assertion syntax Reference

OctetSubstringAssertion X.520 Annex A

PkiPath X.509 Annex A

PolicySyntax X.509 Annex A

PostalAddress X.520 Annex A

PreferredDeliveryMethod X.520 Annex A

PresentationAddress X.520 Annex A

ProtocolInformation X.520 Annex A

RelativeDistinguishedName X.501 Annex B

SubjectPublicKeyInfo X.509 Annex A

SubstringAssertion X.520 Annex A

SubtreeSpecification X.501 Annex B

SupplierAndConsumers X.501 Annex E

SupplierInformation X.501 Annex E

SupplierOrConsumer X.501 Annex F

SupportedAlgorithm X.509 Annex A

TelephoneNumber X.520 Annex A

TeletexTerminalIdentifier X.520 Annex A

TelexNumber X.520 Annex A

Time X.509 Annex A

UniqueIdentifier X.501 Annex D

X121Address X.520 Annex A

 X.400 attribute syntaxes

DLSubmitPermission X.411

ORAddress X.411

ORName X.411

RequestedDeliveryMethod X.411

 XED Syntaxes

AnyType draft-legg-xed-rxer-xx.txt

IdentifiedSchema draft-legg-xed-schema-xx.txt

SchemaIdentity draft-legg-xed-schema-xx.txt

 PKCS attribute syntaxes

CertificationRequest PKCS #10

Certs PKCS #7

ContentInfo PKCS #7

Data PKCS #7

DigestedData PKCS #7

EncryptedMACData PKCS #7

EnvelopedData PKCS #7

FileDetails PKCS #9

IndirectDataContent PKCS #7

PBES2-params PKCS #5

PBEParameter PKCS #5

PBKDF2-params PKCS #5

PBMAC1-params PKCS #5

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 229

Attribute or Assertion syntax Reference

PKCS7TextParameters PKCS #7

PKCS9String PKCS #9

RC2-CBC-Parameter PKCS #5

RC5-CBC-Parameters PKCS #5

SignedData PKCS #7

SignedPublicKeyAndChallenge PKCS #10

 QUIPU and other attribute syntaxes

ACLSyntax QUIPU source code

AttributeCertificate * ANSI X9.57

Audio QUIPU source code

AuthenticationPolicySyntax QUIPU source code

BootParameterSyntax RFC 2307

Call QUIPU source code

CcMailAttributes Nortel

DSAQualitySyntax QUIPU source code

EDBInfoSyntax QUIPU source code

InheritedAttribute QUIPU source code

JPEG QUIPU source code

ListACLSyntax QUIPU source code

MsMailAttributes Nortel

NISNetgroupTripleSyntax RFC 2307

OtherMailbox RFC 1274

QuipuProtectedPassword QUIPU source code

SearchACLSyntax QUIPU source code

SecurityPolicy QUIPU source code

TreeStructureSyntax QUIPU source code

* The DSA preserves and returns the original uploaded encoding for these attributes.

ViewDS-specific syntaxes

The ViewDS DSA supports the following built-in ViewDS-specific attribute and

assertion syntaxes, used with ViewDS operational attributes:

ViewDS-specific syntax Reference

AnonymousPrivilege Chapter 6

AnonymousPrivilegeAssertion

ATTRIBUTE.&id
(an OBJECT IDENTIFIER for an attribute type)

X.501 Annex B

AttributePresentation Chapter 6

AttributeTypeExtension Chapter 5

AuthenticationLevel X.501 Annex E

BaseObjectIndexing Chapter 5

CaseIgnoreList

ConsumerStatus Chapter 8

DSACollaborator Chapter 8

DSACollaboratorAssertion

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

230 Appendix B: Supported schema

ViewDS-specific syntax Reference

DUABanners Chapter 6

EntrustCAInfo

Fax

GeneralDate Time type definitions (page 231)

GeneralDateTime Time type definitions (page 231)

GeneralTimeOfDay Time type definitions (page 231)

HierarchyNameSpecification Chapter 6

IndexDescription Chapter 5

KeySize X.509 Annex F

MailPreference

MATCHING-RULE.&id

(an OBJECT IDENTIFIER for a matching rule)

X.501 Annex B

ModifyRight

Name X.501 Annex B

NAME-FORM.&id

(an OBJECT IDENTIFIER for a name form)

X.501 Annex B

NewSubordinateModifyRights

OBJECT-CLASS.&id

(an OBJECT IDENTIFIER for an object class)

X.501 Annex B

ObjectClassPresentation Chapter 6

ODataDate Time type definitions (page 231)

ODataDateTimeOfDay Time type definitions (page 231)

ODataDateTimeOffset Time type definitions (page 231)

OTHER-OBJECT-IDENTIFIER

(an OBJECT IDENTIFIER that is not for an attribute
type, matching rule, object class or name form)

PasswordEncryption Chapter 6

PermittedNewSubordinates

PlaneKnowledge

PlaneRef Chapter 8

Privilege Chapter 6

RemoteAlias Chapter 8

ResolvedDistinguishedName Chapter 6

SASLDigestMD5Assertion

SearchOptions Chapter 6

SEPType Chapter 8

ShadowStatusIdentifier

SupplierOrConsumerInformationAssertion

SupplierStatus Chapter 8

UnsignedCertificate

UserConfig Chapter 6

UserGroup Chapter 6

UserEntitlement Chapter 6

WordList Chapter 5

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 231

Time type definitions

The date and time syntaxes are derived from the ASN.1 TIME type described in

Amendment 3 to ITU-T Rec. X.680:2002 | ISO/IEC 8824-1:2002.

The ASN.1 definitions are as follows:

GeneralDateTime ::= TIME {

 (SETTINGS "Basic=Date-Time Date=YMD Midnight=Start")

}

GeneralDate ::= TIME {

 (SETTINGS "Basic=Date Date=YMD")

}

GeneralTimeOfDay ::= TIME {

 (SETTINGS "Basic=Time Midnight=Start")

}

ODataDateTimeOffset ::= TIME {

 (SETTINGS "Basic=Date-Time Date=YMD Time=HMSF12 Midnight=Start" ^

 (SETTINGS "Local-or-UTC=Z" | SETTINGS "Local-or-UTC=LD"))

}

ODataDate ::= TIME {

 (SETTINGS "Basic=Date Date=YMD Local-or-UTC=L Midnight=Start")

}

ODataTimeOfDay ::= TIME {

 (SETTINGS "Basic=Time Time=HMSF12 Local-or-UTC=L Midnight=Start")

}

Matching rules

Standard matching rules

The ViewDS DSA supports all matching rules defined in the X.500-series (1993) and

X.402 (1988) Recommendations. These are as follows:

Matching Rule OID Reference

objectIdentifierMatch ds 13 0 X.501 Annex B

distinguishedNameMatch ds 13 1 X.501 Annex B

 X.520 matching rules

caseIgnoreMatch ds 13 2 X.520 Annex A

caseIgnoreOrderingMatch ds 13 3 X.520 Annex A

caseIgnoreSubstringsMatch ds 13 4 X.520 Annex A

caseExactMatch ds 13 5 X.520 Annex A

caseExactOrderingMatch ds 13 6 X.520 Annex A

caseExactSubstringsMatch ds 13 7 X.520 Annex A

numericStringMatch ds 13 8 X.520 Annex A

numericStringOrderingMatch ds 13 9 X.520 Annex A

numericStringSubstringsMatch ds 13 10 X.520 Annex A

caseIgnoreListMatch ds 13 11 X.520 Annex A

caseIgnoreListSubstringsMatch ds 13 12 X.520 Annex A

booleanMatch ds 13 13 X.520 Annex A

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

232 Appendix B: Supported schema

Matching Rule OID Reference

integerMatch ds 13 14 X.520 Annex A

integerOrderingMatch ds 13 15 X.520 Annex A

bitStringMatch ds 13 16 X.520 Annex A

octetStringMatch ds 13 17 X.520 Annex A

octetStringOrderingMatch ds 13 18 X.520 Annex A

octetStringSubstringsMatch ds 13 19 X.520 Annex A

telephoneNumberMatch ds 13 20 X.520 Annex A

telephoneNumberSubstringsMatch ds 13 21 X.520 Annex A

presentationAddressMatch ds 13 22 X.520 Annex A

uniqueMemberMatch ds 13 23 X.520 Annex A

protocolInformationMatch ds 13 24 X.520 Annex A

uTCTimeMatch ds 13 25 X.520 Annex A

uTCTimeOrderingMatch ds 13 26 X.520 Annex A

generalizedTimeMatch ds 13 27 X.520 Annex A

generalizedTimeOrderingMatch ds 13 28 X.520 Annex A

integerFirstComponentMatch ds 13 29 X.520 Annex A

objectIdentifierFirstComponentMatch ds 13 30 X.520 Annex A

directoryStringFirstComponentMatch ds 13 31 X.520 Annex A

wordMatch ds 13 32 X.520 Annex A

keywordMatch ds 13 33 X.520 Annex A

facsimileNumberMatch ds 13 63 X.520 Annex A

facsimileNumberSubstringsMatch ds 13 64 X.520 Annex A

 Knowledge matching rules

accessPointMatch ds 14 0 X.501 Annex E

masterAndShadowAccessPointsMatch ds 14 1 X.501 Annex E

supplierOrConsumerInformationMatch ds 14 2 X.501 Annex E

supplierAndConsumersMatch ds 14 3 X.501 Annex E

 X.400 matching rules

orAddressElementsMatch mhs 4 8 13 X.402

orAddressMatch mhs 4 8 14 X.402

orNameElementsMatch mhs 4 8 16 X.402

oRNameExactMatch mhs 5 0 X.402

orNameMatch mhs 4 8 17 X.402

oRNameSingleElementMatch mhs 4 8 18 X.402

oRAddressSubstringElementsMatch mhs 4 8 15 X.402

oRNameSubstringElementsMatch mhs 4 8 19 X.402

 X.509 (1997) matching rules

algorithmIdentifierMatch ds 13 40 X.509 (1997)

certificateExactMatch ds 13 34 X.509 (1997)

certificateListExactMatch ds 13 38 X.509 (1997)

certificateListMatch ds 13 39 X.509 (1997)

certificateMatch ds 13 35 X.509 (1997)

certificatePairExactMatch ds 13 36 X.509 (1997)

certificatePairMatch ds 13 37 X.509 (1997)

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 233

Matching Rule OID Reference

 LDAP matching rules

caseExactIA5Match ldap 109 114 1 RFC 2252

caseIgnoreIA5Match ldap 109 114 2 RFC 2252

caseIgnoreIA5SubstringsMatch ldap 109 114 3 RFC 2798

componentFilterMatch ads 13 2 RFC 3687

rdnMatch ads 13 3 RFC 3687

presentMatch ads 13 5 RFC 3687

allComponentsMatch ads 13 6 RFC 3687

directoryComponentsMatch ads 13 7 RFC 3687

 XED matching rules

schemaIdentityMatch ads 13 10 draft-legg-xed-
schema-xx.txt

ViewDS-specific matching rules

Matching Rule OID Reference

anonymousPrivilegeMatch vf 13 12 Below

asn1Match vf 13 0 Below

asn1OrderingMatch vf 13 1 Below

defaultApproximateMatch vf 13 8 Below

defaultEqualityMatch vf 13 4 Below

defaultGreaterOrEqualMatch vf 13 7 Below

defaultLessOrEqualMatch vf 13 6 Below

defaultPresentMatch vf 13 3 Below

defaultSubstringsMatch vf 13 5 Below

dsaCollaboratorMatch vf 13 2 Below

dsaPasswordMatch vf 13 13 Below

indexDescriptionMatch vf 13 19 Below

literalStringMatch vds 13 2 Below

literalStringOrderingMatch vds 13 3 Below

literalStringSubstringsMatch vds 13 31 Below

oldGeneralWordMatch vf 13 17 Below

sepTypeMatch vf 13 14 Below

shadowStatusMatch vf 13 16 Below

undefinedMatch ads 13 8 Below

saslDigestMD5Match ads 13 9 Below

dateTimeMatch vds 13 7 Below

dateTimeOrderingMatch vds 13 8 Below

timeOfDayMatch vds 13 9 Below

timeOfDayOrderingMatch vds 13 10 Below

dayOfWeekMatch vds 13 11 Below

dayOfWeekOrderingMatch vds 13 12 Below

Each is described below.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

234 Appendix B: Supported schema

anonymousPrivilegeMatch

An anonymousPrivilegeMatch is true if two values of anonymousPrivilege

have at least one common bit set in both the protocol and credentialType bit

strings. Its assertion syntax is AnonymousPrivilegeAssertion.

AnonymousPrivilegeAssertion ::= SET {

 protocol [0] BIT STRING,

 credentialType [1] BIT STRING }

asn1Match

An asn1Match is true if two values have the same ASN.1 encoding, ignoring

differences in set ordering. Its assertion syntax is an open type.

asn1OrderingMatch

An asn1OrderingMatch is true if the attribute value being compared is determined

to be ‘less than’ the presented value. Primitive ASN.1 components (INTEGER,

OCTET STRING etc) are compared using normal rules for their type. SET,

SEQUENCE, and CHOICE types are compared by comparing their components in

definition order. A missing OPTIONAL component or a later CHOICE is considered to

be less than a present component or an earlier CHOICE. A missing DEFAULT

component is compared as though it is a missing OPTIONAL component. The ASN.1

constructs SET OF and SEQUENCE OF are compared by comparing member values

in turn. A SET OF is first reordered so lesser values lie ahead of greater values. If one

SET OF or SEQUENCE OF is a prefix of the other, the shorter is considered to less

than the longer. The assertion syntax of this rule is an open type.

defaultEqualityMatch

A defaultEqualityMatch is true if the values match for equality using the default

equality matching rule for the attribute type. Its assertion syntax is the same as the

syntax of the attribute to which it is applied.

defaultSubstringsMatch

A defaultSubstringsMatch is true if a substrings match applied to the attribute

would return true. Its assertion syntax is same as the strings component of the

substrings component of FilterItem.

defaultLessOrEqualMatch

A defaultLessOrEqualMatch is true if a lessOrEqual match applied to the

attribute would return true. Its assertion syntax is the same as the syntax of the

attribute to which it is applied.

defaultGreaterOrEqualMatch

A defaultGreaterOrEqualMatch is true if a greaterOrEqual match applied to

the attribute would return true. Its assertion syntax is the same as the syntax of the

attribute to which it is applied.

defaultApproximateMatch

A defaultApproximateMatch is true if an approximateMatch match applied to

the attribute would return true. Its assertion syntax is the same as the syntax of the

attribute to which it is applied.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 235

defaultPresentMatch

A defaultPresentMatch is true if the attribute type is present in the entry. Its

assertion syntax is NULL.

dsaCollaboratorMatch

A dsaCollaboratorMatch is true if two values of dsaCollaborators have DSA

names that match its assertion syntax is DSACollaboratorAssertion.

DSACollaboratorAssertion ::= SET {

 dsa-name [0] Name,

 password [1] OCTET STRING }

dsaPasswordMatch

A dsaPasswordMatch is true if two values of dsaCollaborators have DSA

names that match and passwords that match. Its assertion syntax is

DSACollaboratorAssertion.

indexDescriptionMatch

An indexDescriptionMatch is true if the type and index fields of the assertion

value match the respective fields in an attribute value with syntax IndexDescription.

The assertion syntax of this matching rule is IndexDescription.

literalStringMatch

A literalStringMatch is true if the string attribute value and string assertion

value are the same length and corresponding characters have the same Unicode

code point. No transformations are applied to the strings before comparison.

literalStringOrderingMatch

A literalStringOrderingMatch is true if the string attribute value is

lexicographically before the string assertion value, ordering on Unicode code

points. No transformations are applied to the strings before comparison.

literalStringSubstringsMatch

The literalStringSubstringsMatch uses the SubstringAssertion syntax.

A literalStringSubstringsMatch is true if there is a partitioning of the

attribute value (into portions) such that the specified substrings (initial, any,

final) match different portions of the value in the order of the substrings' sequence:

• initial, if present, matches the first portion of the value.

• final, if present, matches the last portion of the value.

• any, if present, matches some arbitrary portion of the value.

For a component of substrings to match a portion of the attribute value the

corresponding characters must have the same Unicode code point. No

transformations are applied to the strings before comparison.

oldGeneralWordMatch

An oldGeneralWordMatch is true if the assertion string matches an attribute string

according to the rules for general word matches (see F.510 and the X.500 (1999)

working document). Its assertion syntax is GeneralWordAssertion.

GeneralWordAssertion ::= SEQUENCE {

 string DirectoryString {ub-match},

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

236 Appendix B: Supported schema

 sequenceMatchType ENUMERATED {

 sequenceExact (0),

 sequenceDeletion (1),

 sequenceRestrictedDeletion (2),

 sequenceRotation (3),

 sequenceRotationAndDeletion (4) }

 DEFAULT sequenceExact,

 wordMatchTypes SEQUENCE OF ENUMERATED {

 wordExact (0),

 wordTruncated (1),

 wordPhonetic (2) } DEFAULT { wordExact },

 characterMatchType ENUMERATED {

 characterExact (0),

 characterCaseIgnore (1),

 characterMapped (2) }

 DEFAULT characterExact}

sepTypeMatch

A sepTypeMatch is true if two values of sepType are the same enumerated value of

the SEPType syntax. Its assertion syntax is SEPType.

shadowStatusMatch

A shadowStatusMatch is true if two values of type ShadowStatus refer to the same

DSA and have the same identifier. Its assertion syntax is

ShadowStatusIdentifier.

ShadowStatusIdentifier ::= SEQUENCE {

 dsaName [0] Name,

 identifier [1] INTEGER

}

undefinedMatch

An undefinedMatch is always undefined (i.e. neither True nor False). This

matching rule has been included in order to handle the chaining of search operations

which have been converted from LDAP to DAP, where some attribute types and/or

matching rules used in the search filter are not recognized in the X.500 schema.

X.500 filter evaluation requires these parts of the filter to be evaluated as undefined

and this matching rule provides a mechanism to pass this information on to other

DSAs through DSP even though we cannot provide the object identifier for the

attribute or matching rule which failed conversion.

saslDigestMD5Match

The saslDigestMD5Match matching rule is used to allow ViewDS to chain LDAP

SASL "DIGEST-MD5" bind requests to other DSAs, using the distributed operations,

without the need to transmit clear-text passwords over the network. It accomplishes

this by collecting the SASL bind arguments and the server details required to verify

the SASL authentication request and passing this information on to the DSA, that has

knowledge of the clear-text password for the identity requesting authentication, using

a search operation. The response to this search operation will include an operational

attribute holding the information required to form a valid SASL response to this

authentication request.

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 237

The assertion syntax for this matching rule is:

SASLDigestMD5Assertion ::= SEQUENCE {

 username [0] OCTET STRING,

 realm [1] OCTET STRING OPTIONAL,

 nonce [2] OCTET STRING,

 cnonce [3] OCTET STRING,

 nonce-count [4] OCTET STRING OPTIONAL,

 qop [5] OCTET STRING OPTIONAL,

 digest-uri [6] OCTET STRING OPTIONAL,

 response [7] OCTET STRING,

 maxbuf [8] OCTET STRING OPTIONAL,

 charset [9] OCTET STRING OPTIONAL,

 authzid [10]OCTET STRING OPTIONAL

}

The fields in this syntax correspond to the SASL "DIGEST-MD5" fields described in

RFC2831 Using Digest Authentication as a SASL Mechanism.

dateTimeMatch

The equality matching rule for the currentDateTime and userDateTime

operational attributes.

When matching the currentDateTime attribute:

• If the assertion value is a UTC time (that is, Z is the last character) or it has a time-

zone difference, the comparison is on UTC times.

• If the assertion value is a local time (that is, no Z at the end or time-zone

difference), only the local part of the attribute value is compared. This allows

assertions against either UTC time or the server's local time using the one

operational attribute.

Values of the userDateTime attribute are always local times and are compared as

such.

dateTimeOrderingMatch

The ordering matching rule for currentDateTime and userDateTime operational

attributes.

timeOfDayMatch

The equality matching rule for the currentTimeOfDay and userTimeOfDay

operational attributes. It compares two time of day values in ISO 8601 format for

equality. It operates in the same way as dateTimeMatch with regard to time zones.

timeOfDayOrderingMatch

The ordering matching rule for the currentTimeOfDay and userTimeOfDay

operational attributes.

dayOfWeekMatch

The equality matching rule for the currentDayOfWeek and userDayOfWeek

operational attributes.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

238 Appendix B: Supported schema

dayOfWeekOrderingMatch

The ordering matching rule for the currentDayOfWeek and userDayOfWeek

operational attributes. Monday is the first day of the week and has the least value;

Sunday is the last day of the week and has the highest value.

User attributes

The ViewDS DSA can store any attribute that is specified using a supported attribute

syntax and supported matching rules. In particular, it can store all attributes of X.520

(1988) and X.520 (1993), and all attributes of Annex C of X.402 (1994). Built-in

definitions are as follows.

Standard user attributes

Standard Attribute OID Reference

 System attributes

objectClass ds 4 0 X.501 Annex B

aliasedEntryName ds 4 1 X.501 Annex B

knowledgeInformation ds 4 2 X.520 Annex A

 Naming attributes

commonName ds 4 3 X.520 Annex A

surname ds 4 4 X.520 Annex A

serialNumber ds 4 5 X.520 Annex A

name ds 4 41 X.520 Annex A

givenName ds 4 42 X.520 Annex A

initials ds 4 43 X.520 Annex A

generationQualifier ds 4 44 X.520 Annex A

uniqueIdentifier ds 4 45 X.520 Annex A

dnQualifier ds 4 46 X.520 Annex A

 Geographic attributes

countryName ds 4 6 X.520 Annex A

localityName ds 4 7 X.520 Annex A

collectiveLocalityName ds 4 7 1 X.520 Annex A

stateOrProvinceName ds 4 8 X.520 Annex A

collectiveStateOrProvinceName ds 4 8 1 X.520 Annex A

streetAddress ds 4 9 X.520 Annex A

collectiveStreetAddress ds 4 9 1 X.520 Annex A

houseIdentifier ds 4 51 X.520 Annex A

 Organizational attributes

organizationName ds 4 10 X.520 Annex A

collectiveOrganizationName ds 4 10 1 X.520 Annex A

organizationalUnitName ds 4 11 X.520 Annex A

collectiveOrganizationalUnitName ds 4 11 1 X.520 Annex A

 Explanatory attributes

title ds 4 12 X.520 Annex A

description ds 4 13 X.520 Annex A

searchGuide ds 4 14 X.520 Annex A

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 239

Standard Attribute OID Reference

businessCategory ds 4 15 X.520 Annex A

enhancedSearchGuide ds 4 47 X.520 Annex A

 Postal attribute

postalAddress ds 4 16 X.520 Annex A

collectivePostalAddress ds 4 16 1 X.520 Annex A

postalCode ds 4 17 X.520 Annex A

collectivePostalCode ds 4 17 1 X.520 Annex A

postOfficeBox ds 4 18 X.520 Annex A

collectivePostOfficeBox ds 4 18 1 X.520 Annex A

physicalDeliveryOfficeName ds 4 19 X.520 Annex A

collectivePhysicalDeliveryOfficeName ds 4 19 1 X.520 Annex A

 Telecommunications atts

telephoneNumber ds 4 20 X.520 Annex A

collectiveTelephoneNumber ds 4 20 1 X.520 Annex A

telexNumber ds 4 21 X.520 Annex A

collectiveTelexNumber ds 4 21 1 X.520 Annex A

teletexTerminalIdentifier ds 4 22 X.520 Annex A

collectiveTeletexTerminalIdentifier ds 4 22 1 X.520 Annex A

facsimileTelephoneNumber ds 4 23 X.520 Annex A

collectiveFacsimileTelephoneNumber * ds 4 23 1 X.520 Annex A

x121Address ds 4 24 X.520 Annex A

internationalISDNNumber ds 4 25 X.520 Annex A

collectiveInternationalISDNNumber ds 4 25 1 X.520 Annex A

registeredAddress ds 4 26 X.520 Annex A

destinationIndicator ds 4 27 X.520 Annex A

preferredDeliveryMethod ds 4 28 X.520 Annex A

 OSI attributes

presentationAddress ds 4 29 X.520 Annex A

supportedApplicationContext ds 4 30 X.520 Annex A

protocolInformation ds 4 48 X.520 Annex A

 Relational attributes

member ds 4 31 X.520 Annex A

owner ds 4 32 X.520 Annex A

roleOccupant ds 4 33 X.520 Annex A

seeAlso ds 4 34 X.520 Annex A

distinguishedName ds 4 49 X.520 Annex A

uniqueMember ds 4 50 X.520 Annex A

 Security attributes

userPassword ds 4 35 X.509 Annex A

userCertificate ds 4 36 X.509 Annex A

cACertificate ds 4 37 X.509 Annex A

authorityRevocationList ds 4 38 X.509 Annex A

certificateRevocationList ds 4 39 X.509 Annex A

crossCertificatePair ds 4 40 X.509 Annex A

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

240 Appendix B: Supported schema

Standard Attribute OID Reference

 X.400 attributes

mhs-deliverable-content-length mhs 5 2 0 X.402 Annex C

mhs-deliverable-content-types mhs 5 2 1 X.402 Annex C

mhs-deliverable-eits mhs 5 2 2 X.402 Annex C

mhs-dl-archive-service mhs 5 2 12 X.402 Annex C

mhs-dl-members mhs 5 2 3 X.402 Annex C

mhs-dl-policy mhs 5 2 13 X.402 Annex C

mhs-dl-related-lists mhs 5 2 14 X.402 Annex C

mhs-dl-submit-permissions mhs 5 2 4 X.402 Annex C

mhs-dl-subscription-service mhs 5 2 15 X.402 Annex C

mhs-message-store-dn mhs 5 2 5 X.402 Annex C

mhs-or-addresses mhs 5 2 6 X.402 Annex C

mhs-or-addresses-with-capabilities mhs 5 2 16 X.402 Annex C

mhs-supported-attributes mhs 5 2 10 X.402 Annex C

mhs-supported-automatic-actions mhs 5 2 8 X.402 Annex C

mhs-supported-content-types mhs 5 2 9 X.402 Annex C

mhs-supported-matching-rules mhs 5 2 11 X.402 Annex C

mhs-undeliverable-eits mhs 5 2 17 X.402 Annex C

ViewDS-specific user attributes

ViewDS defines a small number of user attributes which are used by Access

Presence.

ViewDS-Specific User Attribute OID Reference

sortSubs vf 4 0 Technical Reference
Guide: User Interfaces

hierarchyName vf 4 1 Technical Reference
Guide: User Interfaces

unabbreviatedHierarchyName ads 4 0 Technical Reference
Guide: User Interfaces

Operational attributes

The operational attributes supported by ViewDS are of two kinds: standard operational

attributes defined in the X.500 Recommendations, and ViewDS-specific operational

attributes that have meaning only for components of ViewDS.

Standard operational attributes

Standard Operational Attribute OID Reference

 Information model

createTimestamp ds 18 1 X.501 Annex B

modifyTimestamp ds 18 2 X.501 Annex B

creatorsName ds 18 3 X.501 Annex B

modifiersName ds 18 4 X.501 Annex B

administrativeRole ds 18 5 X.501 Annex B

subtreeSpecification ds 18 6 X.501 Annex B

collectiveExclusions ds 18 7 X.501 Annex B

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 241

Standard Operational Attribute OID Reference

subschemaTimestamp ds 18 8 X.501 (1997) Annex B

hasSubordinates ds 18 9 X.501 (1997) Annex B

subschemaSubentry ds 18 10 X.501 (1997) Annex B

accessControlSubentries ds 18 11 X.501 (1997) Annex B

collectiveAttributeSubentries ds 18 12 X.501 (1997) Annex B

 Schema administration

dITStructureRules ds 21 1 X.501 Annex C

dITContentRules ds 21 2 X.501 Annex C

matchingRules ds 21 4 X.501 Annex C

attributeTypes ds 21 5 X.501 Annex C

objectClasses ds 21 6 X.501 Annex C

nameForms ds 21 7 X.501 Annex C

matchingRuleUse ds 21 8 X.501 Annex C

structuralObjectClass ds 21 9 X.501 Annex C

governingStructureRule ds 21 10 X.501 Annex C

definitions xed 21 0 draft-legg-xed-schema-
xx.txt

 Basic access control

accessControlScheme ds 24 1 X.501 Annex D

prescriptiveACI ds 24 4 X.501 Annex D

entryACI ds 24 5 X.501 Annex D

subentryACI ds 24 6 X.501 Annex D

userGroups ads 18 5 Chapter 6

 LDAP password policy

pwdAttribute sun-at 1 Chapter 6

pwdMinAge sun-at 2 Chapter 6

pwdMaxAge sun-at 3 Chapter 6

pwdInHistory sun-at 4 Chapter 6

pwdCheckSyntax sun-at 5 Chapter 6

pwdMinLength sun-at 6 Chapter 6

pwdExpireWarning sun-at 7 Chapter 6

pwdGraceLoginLimit sun-at 8 Chapter 6

pwdLockout sun-at 9 Chapter 6

pwdLockoutDuration sun-at 10 Chapter 6

pwdMaxFailure sun-at 11 Chapter 6

pwdFailureCountInterval sun-at 12 Chapter 6

pwdMustChange sun-at 13 Chapter 6

pwdAllowUserChange sun-at 14 Chapter 6

pwdSafeModify sun-at 15 Chapter 6

pwdChangedTime sun-at 16 Chapter 6

pwdAccountLockedTime sun-at 17 Chapter 6

pwdExpirationWarned sun-at 18 Chapter 6

pwdFailureTime sun-at 19 Chapter 6

pwdHistory sun-at 20 Chapter 6

pwdGraceUseTime sun-at 21 Chapter 6

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

242 Appendix B: Supported schema

Standard Operational Attribute OID Reference

pwdReset sun-at 22 Chapter 6

pwdPolicySubentry sun-at 23 Chapter 6

pwdMaxIdle sun-at 26 Chapter 6

pwdLastSuccess sun-at 29 Chapter 6

DSA operational atts

dseType ds 12 0 X.501 Annex D

myAccessPoint ds 12 1 X.501 Annex D

superiorKnowledge ds 12 2 X.501 Annex D

specificKnowledge ds 12 3 X.501 Annex D

nonSpecificKnowledge ds 12 4 X.501 Annex D

supplierKnowledge ds 12 5 X.501 Annex D

consumerKnowledge * ds 12 6 X.501 Annex D

secondaryShadows * ds 12 7 X.501 Annex D

* Standard operational attributes marked with a * are supported only to the extent that

ViewDS can accept an attempt to add, modify, or read a value of the attribute;

ViewDS does not support the semantics defined in the X.500 Recommendations.

ViewDS-specific operational attributes

The operational attributes implemented by the ViewDS DSA are as follows:

ViewDS-Specific Operational Attribute OID Reference

DSA attributes

attributeTypeExtensions vf 21 0 Chapter 5

dsaCollaborators vf 12 0 Chapter 6

anonymousPrivilege vf 12 1 Chapter 6

sepType vf 12 2 Chapter 7

supplierStatus vf 12 6 Chapter 7

consumerStatus vf 12 7 Chapter 7

resolvedDistinguishedName vf 18 0 Technical Reference
Guide: User Interfaces

updatersName vf 18 1 Technical Reference
Guide: User Interfaces

userName vf 18 2 Chapter 6

protectedFEALPassword vf 18 3 Chapter 6

localSubschemaTimestamp vf 18 11 Chapter 5

wordList vf 18 13 Chapter 5

remoteAlias vf 18 14 Chapter 7

passwordModifyTimestamp vf 18 15 Chapter 6

passwordExpiry vf 18 16 Chapter 6

passwordEncryption vf 18 17 Chapter 6

privilege vf 24 0 Chapter 6

numberOfMasterEntries ads 12 0 Chapter 5

numberOfShadowEntries ads 12 1 Chapter 4

proxyAgent ads 24 0 Chapter 6

hierarchyNameSpecification ads 18 2 Technical Reference
Guide: User Interfaces

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 243

ViewDS-Specific Operational Attribute OID Reference

currentDateTime vds 18 2 Chapter 4

currentTimeOfDay vds 18 3 Chapter 4

currentDayOfWeek vds 18 3 Chapter 4

userDateTime vds 18 6 Chapter 4

userTimeOfDay vds 18 7 Chapter 4

userDayOfWeek vds 18 8 Chapter 4

userTimeZone vds 18 5 Chapter 4

viewDSMatchQuality vds 18 11 Chapter 4

viewDSSimpleMatchQuality vds 18 12 Chapter 4

viewDSPasswordQuality vds 18 21 Chapter 6

viewDSPasswordDistance vds 18 22 Chapter 6

automaticIndexing ads 21 2 Chapter 5

viewdsBuiltInSyntaxes vds 21 6 Below

viewdsBuiltInSchema vds 21 7 Below

viewdsBuiltInAttributeTypes vds 21 12 Below

DUA configuration atts

duaBanners vf 18 4 Technical Reference
Guide: User Interfaces

attributePresentation vf 18 5 As above

objectClassPresentation vf 18 6 As above

searchOptions vf 18 7 As above

userEntitlement vf 18 8 As above

userConfig vf 18 9 As above

defaultEntitlement vf 18 12 As above

viewdsBuiltInSyntaxes

An operational attribute that can be read from any entry to return a list of syntaxes

supported by this instance of ViewDS. Intended for internal ViewDS use only.

viewdsBuiltInSchema

An operational attribute that can be read from any entry to return a list of built-in

schema definitions supported by this instance of ViewDS. The schema definitions

returned include all of the built in syntaxes, matching rules, attribute types, object

classes and name forms. Intended for internal ViewDS use only.

viewdsBuiltInAttributeTypes

An operational attribute that can be read from any entry to return a list of built in

attribute type definitions supported by this instance of ViewDS. This attribute uses the

standard AttributeTypeDefinition syntax, whose values are the schema definitions of

all built in attribute types. Intended for internal ViewDS use only.

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

244 Appendix B: Supported schema

Object classes

The ViewDS DSA has built-in definitions of the following object classes.

Supported Object Classes OID Reference

Directory object classes

top ds 6 0 X.521 Annex A

alias ds 6 1 X.521 Annex A

country ds 6 2 X.521 Annex A

locality ds 6 3 X.521 Annex A

organization ds 6 4 X.521 Annex A

organizatonalUnit ds 6 5 X.521 Annex A

person ds 6 6 X.521 Annex A

organizationalPerson ds 6 7 X.521 Annex A

organizationalRole ds 6 8 X.521 Annex A

groupOfNames ds 6 9 X.521 Annex A

residentialPerson ds 6 10 X.521 Annex A

applicationProcess ds 6 11 X.521 Annex A

applicationEntity ds 6 12 X.521 Annex A

dSA ds 6 13 X.521 Annex A

device ds 6 14 X.521 Annex A

strongAuthenticationUser ds 6 15 X.521 Annex A

certificationAuthority ds 6 16 X.521 Annex A

groupOfUniqueNames ds 6 17 X.521 Annex A

subentry ds 17 0 X.501 Annex B

accessControlSubentry ds 17 1 X.501 Annex B

collectiveAttributeSubentry ds 17 2 X.501 Annex B

subschema ds 20 1 X.501 Annex C

X.400 object classes

mhs-distribution-list mhs 5 1 0 X.402

mhs-message-store mhs 5 1 1 X.402

mhs-message-transfer-agent mhs 5 1 2 X.402

mhs-user mhs 5 1 3 X.402

mhs-user-agent mhs 5 1 4 X.402

Name forms

The ViewDS DSA has built-in definitions of the following name forms. Note that it

supports RDNs containing multiple AVAs.

Standard Name Forms OID References

countryNameForm ds 15 0 X.521 Annex A

locNameForm ds 15 1 X.521 Annex A

sOPNameForm ds 15 2 X.521 Annex A

orgNameForm ds 15 3 X.521 Annex A

orgUnitNameForm ds 15 4 X.521 Annex A

personNameForm ds 15 5 X.521 Annex A

orgPersonNameForm ds 15 6 X.521 Annex A

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 245

orgRoleNameForm ds 15 7 X.521 Annex A

gONNameForm ds 15 8 X.521 Annex A

resPersonNameForm ds 15 9 X.521 Annex A

applProcessNameForm ds 15 10 X.521 Annex A

applEntityNameForm ds 15 11 X.521 Annex A

dSANameForm ds 15 12 X.521 Annex A

deviceNameForm ds 15 13 X.521 Annex A

 247

Appendix C

OpenSSL and

SSLeay licensing

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the

OpenSSL License and the original SSLeay license apply to the toolkit. See below for

the actual license texts. Both licenses are BSD-style Open Source licenses. In case of

any license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display

the following acknowledgment: “This product includes software developed by the

OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)”

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

endorse or promote products derived from this software without prior written

permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called “OpenSSL” nor may

“OpenSSL” appear in their names without prior written permission of the OpenSSL

Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

“This product includes software developed by the OpenSSL Project for use in the

OpenSSL Toolkit (http://www.openssl.org/)”

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS” AND ANY

EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL

Version 7.5.1 ViewDS Technical Reference Guide: Directory System Agent

248 Appendix B: Supported schema

PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young

(eay@cryptsoft.com). This product includes software written by Tim Hudson

(tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following

conditions are adhered to. The following conditions apply to all code found in this

distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The

SSL documentation included with this distribution is covered by the same copyright

terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are

not to be removed.

If this package is used in a product, Eric Young should be given attribution as the

author of the parts of the library used.

This can be in the form of a textual message at program start-up or in documentation

(online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display

the following acknowledgement: "This product includes cryptographic software

written by Eric Young (eay@cryptsoft.com)"

The word 'cryptographic' can be left out if the routines from the library being used

are not cryptographic related.

4. If you include any Windows specific code (or a derivative thereof) from the apps

directory (application code) you must include an acknowledgement:

“This product includes software written by Tim Hudson (tjh@cryptsoft.com)”

ViewDS Technical Reference Guide: Directory System Agent Version 7.5.1

Appendix B: Supported schema 249

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ”AS IS” AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publicly available version or derivative of

this code cannot be changed. That is, this code cannot simply be copied and put

under another distribution licence (including the GNU Public Licence).

 251

Appendix D

Open XML SDK

licensing

The MIT License (MIT)

Copyright (c) Microsoft Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the "Software"), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be included in all copies

or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

	Technical Reference Guide:
	Directory System Agent
	Chapter 1 About this guide
	Who should read this guide
	Related documents
	How this guide is organized

	Chapter 2 ViewDS tools
	ViewDS Management Agent
	Stream DUA
	Stream DUA commands
	Synchronization

	Running Stream DUA
	Startup file
	Sleep file
	Interactive mode

	DSAIT management operations
	DAP Admin Protocol
	Strong Authentication

	DSA Controller
	Running the DSA Controller
	Options
	Commands

	DSA Controller examples

	Other ViewDS tools
	ViewDS Fast Load (vfload)
	Synopsis
	Options

	Remote Administration Service
	Synopsis
	Options
	Commands

	Billing statistics
	Synopsis
	Options

	Database backup
	Synopsis
	Options

	DSA utility
	Synopsis
	Options

	Printing DUA
	Synopsis
	Options

	SNMP proxy agent
	Synopsis
	Options

	smerge – sort update log files
	Synopsis
	Example

	Chapter 3 Configuring ViewDS
	DSA runtime settings
	Modifying runtime settings
	Runtime settings file
	dsa process
	DSA runtime settings
	alog
	async (Async mode)
	bindtimeout (Bind timeout)
	cache (Cache size)
	clog
	daptimeout (DAP timeout)
	disptimelimit (DISP time limit)
	dots (Dot threads)
	dotsize (Max dot size)
	dsptimeout (DSP timeout)
	heapsize (Max heap size)
	key (Key)
	optimistic (Concurrency)
	qlog (Query logging)
	recovery (Recovery)
	safe-size (Save size)
	Changing the safe file size

	searchalias
	sessions (Max sessions)
	sizefactor (SEP size factor)
	sizelimit (Size limit)
	timelimit (Time limit)
	ulog (Update logging)
	updates (Max updates)

	Communications configuration
	ViewDS and OSI
	Installation and configuration
	Reserved ports and RFC 1006

	Configuring for LDAP access
	Enabling LDAP access
	LDAP controls
	LDAP Extended Operations
	ViewDS extensions

	Configuring for XLDAP access
	Enabling XLDAP access
	XLDAP controls
	XLDAP extended operations

	Configuring for SNMP access
	Multiple DSAs

	Configuring for SPML access
	listTargetsRequest
	addRequest
	Directory/DN target
	Directory/ID target
	Accessing the new entry

	suspendRequest and resumeRequest

	Addressing
	Protocol stacks
	Presentation addresses
	Network addresses

	URI representation
	OSI-RFC1006 with one nAddress
	OSI (general)
	Deprecated string representation

	Address formats
	OSI stack using RFC1006 with IPv4
	OSI stack using RFC1006 with IPv6
	LWS using IPv4
	LWS using IPv6
	LWS using Unix-domain sockets
	LDAP address using IPv4
	LDAP address using IPv6
	LDAP address using Unix-domain Sockets
	SLDAP address using IPv4
	SLDAP address using IPv6
	IDM address using IPv4
	IDM address using IPv6
	XIDM address using IPv4
	XIDM address using IPv6
	XLDAP address over IP4
	XLDAP address over IPv6
	XLDAP address over SOAP using HTTP (IPv4)
	XLDAP address over TCP SOAP using HTTP (IPv6)

	ViewDS configuration file
	File system parameters
	Address parameters
	Usage

	Access Presence configuration parameters
	Operational parameters

	Chapter 4 Defining schema
	Concepts
	Subschema area, administrative point and subentry
	Built-in and predefined schema

	Schema operational attributes
	Object identifiers
	Example object identifier
	Object identifier prefixes
	Creating object identifiers
	Object identifier organization
	Managing object identifier arcs

	Attribute syntaxes
	Matching rules
	Assertion syntax
	Examples

	Using matching rules

	Attributes
	Using attributes
	Matching rules
	Equality matching rule
	Ordering matching rule
	Substrings matching rule

	Object classes
	Structural and auxiliary object classes
	Aliases

	Name forms
	Using name forms

	Structure rules
	Using structure rules

	Content rules
	Using content rules

	Schema checking
	Loading data files
	Setting levels of schema checking
	ignoreUserModifiableFlag

	Checks performed by the DSA
	Entry creation
	Entry modification
	Schema inconsistency

	Operational attributes
	administrativeRole
	attributeTypes
	AttributeTypeDescription
	AttributeTypeInformation
	Parsing rules for attributeSyntax
	Type
	ActualParameter
	ConstrainedType

	Examples

	objectClasses
	ObjectClassDescription
	ObjectClassInformation
	Examples

	matchingRules
	MatchingRuleDescription
	Examples

	matchingRuleUse
	MatchingRuleUseDescription
	Example

	nameForms
	NameFormDescription
	NameFormInformation
	Examples

	dITStructureRules
	DITStructureRuleDescription
	DITStructureRule
	Examples

	dITContentRules
	DITContentRule
	Examples

	definitions
	Identifier
	document

	subtreeSpecification

	Other operational attributes
	governingStructureRule
	structuralObjectClass
	subschemaTimestamp
	subschemaSubentry
	numberOfMasterEntries
	numberOfShadowEntries
	Time and date attributes

	Chapter 5 Indexes, extensions and word lists
	Concepts
	Indexes
	Attribute-type extensions
	DN tracking
	Attribute hashing
	Dumping to a separate file

	Word lists

	Indexes
	Different kinds of indexes
	Special indexes
	Equality indexes
	Substring indexes
	X.400 indexes
	X.400 matching rules

	Approximate indexes

	Specifying indexing and approximate matching
	Scope of indexes

	Index maintenance
	Rebuilding indexes
	Rebuilding all indexes
	Rebuilding specific indexes

	Virtual View List indexes
	viewDSListIndexing
	filter
	sortKeyList

	Examples

	Operational attributes
	attributeTypeExtensions
	identifier
	indexing
	dnTracking
	Indexing attributes that have DN tracking

	approxMatchType
	valueFileSuffix
	hashValues
	hashAlgorithm
	returnHash
	returnTagged
	deleteValuesReferencingDeleted
	deleteValuesReferencingMoved
	matchQuality
	Examples

	entryIndexing
	Index entire attribute
	Index a component of an attribute
	component
	path

	rdnIndexing
	dnIndexing
	collectiveIndexing
	baseObjectIndexing
	indexingDisabled
	automaticIndexing

	Word lists
	Operational attributes
	ViewDSSynonyms
	ViewDSCombinedSynonyms
	ViewDSNoiseWords
	ViewDSCombinedNoiseWords
	ViewDSTruncatedWords
	ViewDSCombinedTruncatedWords

	Chapter 6 Managing security
	Authentication
	Overview of authentication
	Levels of authentication
	None (no authentication)
	Simple authentication
	Strong authentication

	Super-administrator
	Simple authentication using the deity password
	Strong authentication using explicit trust

	GetMyDN procedure

	Strong authentication
	Trusted CAs
	Explicit trust
	Public–private key pairs
	DSA key pair
	RAS key pair
	ViewDS Management Agent key pair

	Other authentication requirements
	Locating the user’s and intermediate CA’s certificates

	Authentication attributes
	ViewDSUserName
	userPassword
	passwordModifyTimestamp
	passwordExpiryDays
	passwordEncryption
	dsaCollaborators
	Example

	Simple Authentication and Security Layer (SASL)
	DIGEST-MD5
	EXTERNAL
	GSS-API (Kerberos)
	Service Principle Name
	Implementing

	Access control
	Access control schemes
	accessControlScheme

	Basic Access Control
	Operational attributes
	prescriptiveACI
	entryACI
	subentryACI
	userGroups

	Role-based access control

	ViewDS Access Control
	privilege
	anonymousPrivilege

	LDAP password management
	Password usage policy
	Password guessing limit
	Password expiration
	Password history
	Password minimum age
	Password syntax
	User defined passwords
	Password change after reset
	Safe modification
	Inactive account lockout

	Password Policy LDAP Control
	passwordPolicyRequest
	passwordPolicyResponse

	Password policy administrative area
	Password policy object class
	pwdPolicy

	Password policy operational attributes
	pwdAttribute
	pwdMinAge
	pwdMaxAge
	pwdInHistory
	pwdCheckSyntax
	pwdMinLength
	pwdExpireWarning
	pwdGraceLoginLimit
	pwdLockout
	pwdLockoutDuration
	pwdMaxFailure
	pwdFailureCountInterval
	pwdMustChange
	pwdAllowUserChange
	pwdSafeModify
	pwdMaxIdle

	Password policy state information
	Password policy state attribute option

	Password policy state operational attributes
	pwdChangedTime
	pwdAccountLockedTime
	pwdExpirationWarned
	pwdFailureTime
	pwdHistory
	pwdGraceUseTime
	pwdReset
	pwdPolicySubentry
	pwdLastSuccess

	ViewDS-specific password policy operational attributes
	viewDSPasswordQuality
	viewDSPasswordDistance

	Adding a password policy
	Creating a password policy administrative area
	Creating the password policy subentry

	Miscellaneous security topics
	Secure Sockets Layer (SSL)
	XML digital signature
	Creating signed responses
	Verifying signed requests

	Dump and log-file security
	Loading encrypted data
	Changing the key

	Proxy permissions
	proxyAgent

	Value hashing
	Original value reversion
	Directory replication
	LDAP Password Policy – syntax checking
	LDAP Password Policy – history
	Example

	Chapter 7 Replicating or distributing data
	Distributed operations overview
	Naming contexts
	Kinds of knowledge
	First-level and subordinate DSAs
	Configuring a DSA for distributed operations

	DSE types
	dseType
	sepType

	Access points
	Example

	Knowledge attributes
	superiorKnowledge
	specificKnowledge
	nonSpecificKnowledge

	Reference example
	Setting up a naming context
	Glue entries
	Example

	Immediate superior reference
	Example

	The subordinate reference
	Specific subordinate reference
	Example

	Non-specific subordinate reference
	Example

	Setting up the root entry
	myAccessPoint
	Example

	Peer or superior knowledge
	First level DSAs
	Example

	Subordinate DSAs
	Example

	Cross references
	Knowledge example
	DSA1
	DSA2
	DSA3

	Remote aliases
	remoteAlias

	Replication
	Restrictions

	Setting up a shadowing agreement
	Activating an agreement
	Schema changes

	Replication attributes
	supplierStatus
	consumer
	identifier
	agreement
	shadowSubject
	updateMode
	master
	secondaryShadows

	update
	lastUpdate
	nextUpdate
	onChangeRetry
	logID
	fullUpdateRequired
	sessionId
	replicationExclusions
	replicateShadowPlane
	forceIncrementalReplace
	version
	lastItemUpdate
	nextUpdateLastItem
	shadowPlaneRefreshed
	replicationLogStatus
	triggerTotalRefresh

	consumerStatus

	Converting shadow into master
	Replication example
	Change to DSA1
	Change to DSA3
	Change to DSA1
	Change to DSA3

	LDAP change log
	Enabling the LDAP change log using Stream DUA
	Creating an LDAP change log container
	Creating an LDAP change log attribute

	Reinitialising the LDAP change log using Stream DUA

	Access Proxy
	CertificateRepositoryService

	Appendix A Stream DUA
	Stream DUA commands
	add
	add-synonym
	add-noise-word
	add-truncated
	add notes
	add examples

	assign
	bind
	Simple authentication
	Strong authentication

	checkpoint
	compare
	delete
	display
	dsa
	dump
	dump notes
	dump example

	empty
	empty notes
	empty example

	entry
	exit
	fill
	insert
	insert example 1
	insert example 2

	ldap-add
	ldap-add example

	ldap-compare
	ldap-compare example

	ldap-delete
	ldap-modify
	ldap-modify example

	ldap-move
	ldap-move example

	ldap-rename
	ldap-rename example

	ldap-search
	ldap-filter
	ldap-filter-item

	ldap-search example

	list
	modify
	modify example

	move
	quit
	read
	register
	remove
	rename
	save
	search
	search notes
	search examples

	set
	set-base
	set-context
	set-prefix
	set-search
	set-username
	set-password
	set-protocol
	set-timing
	set options
	set-synchronization
	SynchronizationClass
	synchronization example

	synchronization notes

	show
	source
	unbind
	userlist
	verify
	xldap-add
	xldap-add example

	xldap-compare
	xldap-delete
	xldap-modify
	xldap-modify example:

	xldap-move
	xldap-rename
	xldap-rename example

	xldap-search
	xldap-search example

	Stream DUA notation
	ASN.1 value notation
	Stream DUA format
	BIT STRING
	BOOLEAN
	DistinguishedName
	DirectoryString
	ENUMERATED
	FacsimileTelephoneNumber
	GeneralizedTime
	OBJECT IDENTIFIER
	OCTET STRING
	ORAddress
	ORName
	PostalAddress
	Restricted String Types
	Open Type

	Input language notation and common arguments
	Common command arguments
	type
	selection
	ldap-selection
	Examples

	octet-string
	value
	attribute
	rdn
	name
	content
	path
	output
	options
	string
	password
	protocol
	username
	delete-old
	ldap-oid
	controls
	scope
	ldap-type
	ldap-value
	ldap-content
	ldapdn
	xldap-controls
	xldap-content

	Service controls

	Appendix B Supported schema
	Introduction
	Object identifier prefixes

	Attribute and assertion syntaxes
	Standard syntaxes
	ViewDS-specific syntaxes
	Time type definitions

	Matching rules
	Standard matching rules
	ViewDS-specific matching rules
	anonymousPrivilegeMatch
	asn1Match
	asn1OrderingMatch
	defaultEqualityMatch
	defaultSubstringsMatch
	defaultLessOrEqualMatch
	defaultGreaterOrEqualMatch
	defaultApproximateMatch
	defaultPresentMatch
	dsaCollaboratorMatch
	dsaPasswordMatch
	indexDescriptionMatch
	literalStringMatch
	literalStringOrderingMatch
	literalStringSubstringsMatch
	oldGeneralWordMatch
	sepTypeMatch
	shadowStatusMatch
	undefinedMatch
	saslDigestMD5Match
	dateTimeMatch
	dateTimeOrderingMatch
	timeOfDayMatch
	timeOfDayOrderingMatch
	dayOfWeekMatch
	dayOfWeekOrderingMatch

	User attributes
	Standard user attributes
	ViewDS-specific user attributes

	Operational attributes
	Standard operational attributes
	ViewDS-specific operational attributes
	viewdsBuiltInSyntaxes
	viewdsBuiltInSchema
	viewdsBuiltInAttributeTypes

	Object classes
	Name forms

	Appendix C OpenSSL and SSLeay licensing
	OpenSSL License
	Original SSLeay License

	Appendix D Open XML SDK licensing

