

13223

TECHNICAL REFERENCE GUIDE:

USER INTERFACES

Published: October 2020

Version: 7.5.1

© ViewDS Identity Solutions

Technical Reference Guide: User Interfaces

For ViewDS Release 7.5.1

November 2020

Document Lifecycle

ViewDS may occasionally update documentation between software releases. Therefore, please visit www.viewds.com to

ensure you have the PDF with most recent publication date.

This publication is copyright. Other than for the purposes of and subject to the conditions prescribed under the

Copyright Act, no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying,

recording or otherwise) be reproduced, stored in a retrieval system or transmitted without prior written permission.

Inquiries should be addressed to the publishers.

The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy

of this publication. Notwithstanding, eNitiatives.com Pty. Ltd. does not assume responsibility for any errors nor for any

consequences arising from any errors in this publication.

The software and/or databases described in this document are furnished under a licence agreement. The software and/or

databases may be used or copied only in accordance with the terms of the agreement.

ViewDS Directory, ViewDS Access Presence & ViewDS Access Sentinel are trademarks of ViewDS Identity Solutions

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

All other product and company names are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2020 ViewDS Identity Solutions

ABN 19 092 422 476

Version 7.5.1 Technical Reference Guide: User Interfaces

 i

Contents

Chapter 1 About this guide ... 3

Who should read this guide ... 3

Conventions .. 3

Related documents.. 4

How this guide is organized ... 4

Chapter 2 System overview .. 5

Overview of Access Presence ... 5

Overview of the Printing DUA ...10

Chapter 3 Configuration files ... 11

Access Presence configuration files ...11

ViewDS configuration file ..15

Additional Access Presence files ..27

Configuring for printing ...27

Configuring for global changes ...28

Chapter 4 Access Presence templates .. 29

Common tags and arguments ..30

Authentication template ..31

Two-factor authentication templates ...32

Welcome template ..34

Search Forms template ..36

Search Results template ..40

Expanded Entry template ...45

Error template ...55

Modify template ..56

Modify Value Form template ...58

Add template ..60

Print Form template ..60

Print template ...62

New Password template ...62

Assign Password template ...63

Request Remove Entry template ..63

Global changes templates ..64

Technical Reference Guide: User Interfaces Version 7.5.1

ii Contents

Target-object cache templates ...66

Chapter 5 Format file ... 73

Location and syntax..73

Assessment order and examples ...76

URI and link tags ..78

Display name tags ..80

Target object tags ...83

Alternative hierarchy tags ...84

Approval process tags ..84

Chapter 6 Server-side attributes .. 87

Important note ..87

Concepts ..87

DUA presentation operational attributes ...89

Preprocessing functions ...111

User operational attributes ...117

Approval process operation attributes ..119

New entry operation attributes ..120

Other operational attributes ..121

Chapter 7 Printing DUA ... 127

Running the Printing DUA ..127

Input script syntax...128

Supported attribute syntaxes ..138

Chapter 8 Printing DUA scripts .. 139

Scripts ..139

phonelist.ds ..139

unitlist.ds ..141

executivelist.ds ...143

mailinglist.ds ...144

staffdetails.ds ...145

Chapter 9 Advanced features ... 149

Configuring proxy authorization for ‘single sign on’ ..149

Configuring external SAML authentication ...152

Configuring related-entry workflow ...153

Configuring the approval process ...154

Configuring for two-factor authentication ..157

 3

Chapter 1

 About this guide

This guide provides information about two ViewDS user interfaces, Access Presence

and the Printing DUA. Access Presence is a web-based DUA that allows users to

search and manage directory data. The Printing DUA produces reports containing

directory data, which can be generated from Access Presence.

This chapter has the following sections:

• Who should read this guide

• Conventions

• Related documents

• How this guide is organized

Who should read this guide

Read this guide if you are responsible for developing, modifying or configuring an

implementation of Access Presence or the Printing DUA.

You will need to be familiar with HTML, and knowledge of a web-based scripting

language is advantageous. You should also be familiar with Access Presence from a

user’s perspective (the ViewDS Directory: Installation and Operation Guide includes

an introductory tutorial).

For information about configuring ViewDS for Access Presence, refer to the ViewDS

Directory: Installation and Operation Guide.

Conventions

The Access Presence tags are in Backus-Naur Form (BNF) and displayed as follows.

<VFDeleteHref [confirm] [html=1*CHAR] [id=1*CHAR]>

Where:

<> Encloses a tag and its arguments.

[] Encloses an optional argument.

1*CHAR A value comprising one or more characters.

1*DIGIT A value comprising one or more digits.

| Separates the allowable values of an argument.

Technical Reference Guide: User Interfaces Version 7.5.1

4 Chapter 1: About this guide

For example, consider the following tag:

<ExampleTag id=1*DIGIT [confirm] [html=1*CHAR] [select=on|off]>

The name of the tag is ExampleTag and it has the following arguments:

• id=1*DIGIT – this argument must be declared and set to a value comprising one

or more digits.

• [confirm] – this is an optional argument that does not require a value and

therefore acts as a flag.

• [html=1*CHAR] – an optional argument, but if declared its value must comprise

one or more characters.

• [select=on|off] – an optional argument, but if declared its value must be either

on or off.

Related documents

As well as this guide, the ViewDS document set includes the following:

• ViewDS Directory: Installation and Operation Guide

• ViewDS Technical Reference Guide: Directory System Agent

• ViewDS Access Sentinel: Installation and Reference Guide

• ViewDS Access Proxy Installation Guide

• ViewDS Management Agent Help

How this guide is organized

Chapter 1: About this guide

Provides a brief overview of this guide.

Chapter 2: System overview

Provides an overview of the main components of Access Presence and the

Printing DUA.

Chapter 3: Configuring Access Presence

Describes the Access Presence configuration files and parameters.

Chapter 4: Access Presence templates

Describes the Access Presence templates and their tags.

Chapter 5: Format file

Describes the format file, its syntax and tags.

Chapter 6: Server-side attributes

Describes the server-side attributes that relate to Access Presence.

Chapter 7: Printing DUA

Describes the syntax and use of the Printing DUA scripting language.

Chapter 8: Printing DUA scripts

Describes the Printing DUA scripts that are supplied with ViewDS.

Chapter 9: Advanced configuration

Includes procedures to configure for ‘single sign on’, related-entry workflow and the

approval process.

 5

Chapter 2

 System overview

This chapter provides an overview of the Access Presence web DUA and the Printing

DUA, their major features and where they fit into the ViewDS architecture. You will

need this background information before adapting either.

This chapter has the following sections:

• Overview of Access Presence

• Overview of the Printing DUA

Overview of Access Presence

This subsection describes the main components of Access Presence and provides an

overview of its functionality.

Main components

Access Presence is the ViewDS web-based client. Figure 1 shows Access Presence,

the template and format files it uses to construct web pages, the configuration files it

accesses, and the Directory System Agent (DSA) and ViewDS Management Agent.

Figure 1: Access Presence components

Technical Reference Guide: User Interfaces Version 7.5.1

6 Chapter 2: System overview

Access Presence constructs web pages containing directory data obtained from the

DSA. How this data is presented is defined by template files, the format file, and the

DUA presentation data stored by the DSA. Additional configuration and presentation

data is stored in the Access Presence configuration files and the ViewDS

configuration file.

Templates

The Access Presence user interface comprises twelve web pages. Each is

constructed from a template file, which is a text file containing standard HTML tags

plus proprietary Access Presence tags.

When a user requests a particular page, Access Presence substitutes the proprietary

template tags for HTML tags and other information. Some of the Access Presence

tags are replaced by directory data, which Access Presence obtains from the DSA,

while others are replaced by links to Access Presence functions or pages.

The templates and tags are described in Chapter 4 of this guide.

Format file

The format file contains Access Presence tags that give a finer level of detail than is

possible through the tags in the Search Results and Expanded Entry templates.

The format file and its tags are described in Chapter 5 of this guide.

Access Presence configuration files

There are three Access Presence configuration files:

• Extra template file – identifies extra templates that can be used in place of the

standard Expanded Entry template.

• MIME mapping file – defines MIME types to associate with attribute types. It allows

users to download attributes of any type to a file of the correct type.

• Post-processing command file – defines the processing to perform on an attribute

value, and is used to generate URIs from attribute values.

The above files are described in Chapter 3 of this guide.

ViewDS configuration file

Access Presence reads parameters in the ViewDS configuration file. These

parameters are described in Chapter 3 of this guide.

Directory System Agent

The DSA provides the following to Access Presence:

• directory data – which Access Presence uses to replace template tags.

• Basic Access Control Items – these access controls can be assigned to users to

control their access to objects and attributes in the directory. They can be defined

using the Stream DUA or ViewDS Management Agent.

• DUA presentation data – which defines, for example, the appearance of entries,

attributes and Search Forms. This data is stored in operation attributes, which can

be managed through either the Stream DUA (see Chapter 6) or the ViewDS

Management Agent (see below).

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 2: System overview 7

ViewDS Management Agent

The ViewDS Management Agent allows you to manage the DUA presentation data

stored by the DSA. This data defines, for example, the appearance of attributes,

object classes and Search Forms.

For information about managing presentation data through the ViewDS Management

Agent, see the topics listed under Defining DUA presentation in the application’s

help system.

Main functionality

The main functionality of Access Presence includes the following:

• Search forms

• Global changes

• Target objects

• Context attributes

• Alternative hierarchy

• Report printing

• Approval process

Search forms

Access Presence allows the user to select from a choice of Search Forms through

which to search the directory. Each form has a definition that includes details such as

which attributes are available for the user to search on, and how the results are

sorted.

The ViewDS Management Agent allows you to define and manage Search Forms –

see the ViewDS Management Agent help topic View or modify a Search Form.

Global changes

An Access Presence user can now make a change to an attribute’s value in multiple

entries – referred to as making a global change. To illustrate, if a user changes an

attribute’s value globally, all instances of the attribute (within the scope of the change)

are then set to the new value.

Before a user can apply global changes, the ViewDS DSA must be configured to

enable this functionality (see Configuring for global changes on page 28).

Target objects

Several Access Presence pages have links relating to the target-object cache – for

example, these links include ‘Set target object’ and ‘Show target object’.

The ‘Set target object’ link allows the user to designate an entry to be a target object

by placing it in the target-object cache. The user can then apply actions to the target

object. For example, when they:

• move an entry – the target object will become its new superior

• print a report – the target object will be the base object for the report

• click ‘Show target object’ – the target object will be displayed

The entry remains in the target-object cache until the user selects ‘Set target object’

for another entry.

Technical Reference Guide: User Interfaces Version 7.5.1

8 Chapter 2: System overview

Alternatively, the user can add multiple entries to the target-object cache (for example,

by selecting an ‘Add to cache’ link). The user can then apply actions to all entries in

the cache, such as adding them to a group.

This guide describes the templates and tags that allow the user to use target objects.

Context attributes

These are attributes to which a user can assign default values – they do this by

entering values and then ‘setting the context’ in a Search Form. These default values

are then assigned to the appropriate context attributes whenever the user

subsequently performs a search. That is, until the user removes the default values (by

‘clearing the context’).

Before the ‘set context’ functionality can be applied to an attribute, it must first be

declared a ‘context attribute’. You can do this through the ViewDS Management Agent

– see the help topic Manage context attributes.

Alternative hierarchy

The entries in a directory are arranged in a directory hierarchy. Access Presence

presents this arrangement and can also display alternative hierarchies.

As a simple illustration, consider a directory hierarchy where entries are organised

according to their department. Figure 2 shows the members of the Test Department at

Widgets and Springs Incorporated.

Figure 2: DIT for Widget and Springs Inc

When Access Presence displays the Expanded Entry page for a department member,

it also lists the remaining members at the same level in the hierarchy. There is,

however, no quick way of seeing who reports to who within the department – Sarah

Ng is actually the manager of the Test Department, but this is not conveyed.

The board of Widgets and Springs Inc now decide they wanted to see the managerial

relationships within their organisation. This can be achieved through Access Presence

by incorporating template tags for an alternative hierarchy. In this case, the tags base

the alternative hierarchy on the value of each entry’s ‘ReportsTo’ attribute.

With this implementation, when Access Presence displays details of a department

member, it also shows the alternative hierarchy. . So, when Sarah Ng’s entry is

displayed, all employees who report to her – the rest of the testers – are listed

as subordinates.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 2: System overview 9

Report printing

ViewDS includes the Printing DUA which runs print scripts that specify the entries to

be extracted from the directory and any subsequent manipulation. Users can run

these print scripts from the Print Form page of Access Presence.

Approval process

This mechanism imposes an approval process on changes to the directory.

A user is designated either a ‘requestor’ or an ‘approver’. A requestor can submit a

request to modify, delete or move an entry. Later, a user with appropriate access

rights, an approver, can either approve or reject the request.

To enable the approval process, see Configuring the approval process on page 154.

Access Presence Cookies

Access Presence may make use of three different session cookies:

• vds-session-id – The session ID of the managed session (see Directory-based

Session Management on page 9)

• VF_Pass – The credentials of the current user

• VF_TARGET_O – Details of the target object

Cookie Security

Both vds-session-id and VF_Pass are HttpOnly cookies. This means that on a

supported browser, they will be used only when transmitting HTTP (or HTTPS)

requests.

All three session cookies used by Access Presence can be set up as Secure cookies.

This means that they can only be used via HTTPS, so they are always encrypted

when being transmitting from client to server. To use Secure cookies set the

webcookiesecure configuration file option to on.

Session Management

Two different types of session management can be employed by Access Presence:

• Cookie-based

• Directory-based

Cookie-based Session Management

User credentials and a session expiry are stored in the VF_Pass session cookie.

To use cookie-based session management websessionenabled must be set to off

and an integer value for websessionexpiry must be provided. This value, if greater

than 0, represents the permitted lifetime of the VF_Pass cookie in seconds. The

default value of 0 indicates that the VF_Pass cookie has an unlimited lifetime.

Directory-based Session Management

Sessions are maintained as objects within ViewDS and only the session IDs are

stored in the vds-session-id session cookie.

To use directory-based session management websessionenabled must be set to

on and the credentials of the user account used for managing session objects in the

directory must be provided in websessionuser and websessionpassword.

Technical Reference Guide: User Interfaces Version 7.5.1

10 Chapter 2: System overview

This user account must have the necessary permissions to be able to maintain

viewDSSessionObject operational attribute values in their entry. The proxyAgent

attribute must also be present.

By default the websessionexpiry for sessions managed by the directory is set to

28800s (8 hours). This expiry is calculated from the time the user last authenticated to

Access Presence. When the session expires the user is redirected to the

authentication form.

The websessioncleanup configuration file option provides a clean-up mechanism

for directory-based sessions. It is an integer with a default value of 86400s (24 hours)

and represents the maximum age of a session object in the directory in seconds.

When Access Presence adds or removes a session object for the current user, it

checks for any other session objects older than this and removes them as part of the

same modify operation.

Overview of the Printing DUA

The input to the Printing DUA is a script and its output is an ASCII file. The script

specifies the entries to be extracted and any subsequent data manipulation. The

Printing DUA can sort the extracted data and insert data (text, tabs, tags, line breaks,

etc.) as required.

The Printing DUA scripts can be invoked from Access Presence or from some other

mechanism external to the directory – such as, the command line or a batch file or

scheduler.

Input script

The input script to the Printing DUA specifies:

• the data to be extracted

• the order in which the data is to be outputted

• the format of the outputted data

A major feature of the Printing PDU is flexible output - this feature enables a user to

specify the form of the output information. Therefore, if it is intended that the output

should be:

• read as plain text, it is generated so that it is as readable as possible.

• the input into another computer system or application (such as a word processing

application), it is generated in the form required by the target system or application.

Output file

Although the functionality of the Printing DUA is powerful, there may be occasions

where it cannot quite produce the precise output required. In this case, it will be

necessary to output data close to the requirement and then process it further with any

general purpose programming language.

When a formatted document is required, the Printing DUA’s output can be fed into a

target application. To accommodate this it is usually necessary for the Printing DUA to

generate ‘tagged data’. The target application can then be used to publish the

document – for example, by setting the fonts, headers, footers, table of contents, and

adding text and graphics as required.

 11

Chapter 3

Configuration files

This chapter describes the configuration files accessed by Access Presence, and also

describes how to configure for printing.

It has the following sections:

• Access Presence configuration files

• ViewDS configuration file

• Additional Access Presence files

• Configuring for printing

• Configuring for global changes

Access Presence configuration files

This section describes the following configuration files that are specific to Access

Presence:

• Extra template file

• MIME mapping file

• Post-processing command file

Extra template file

The extra template file identifies ‘extra templates’ that can be used in place of the

standard Expanded Entry template (see page 45) or Search Results template (see

page 40).

Many of the Access Presence tags generate a URI – for example, VFAuthURI and

VFSearchURI. These tags have an optional id argument that identifies an extra

template to be included in the URI in place of the standard Expanded Entry template.

Whenever a user subsequently views the Expanded Entry page, it is generated using

the extra template identified in the URI. To revert to the standard Expanded Entry

template, the id argument must be set to `_default`.

Each extra template can also be associated with a template-specific format file, which

is defined in the same way as the standard format file (see page 73). The extra

template then uses its template-specific format file plus the standard format file. (The

definitions in the template-specific format file, however, take precedence over those in

the standard format file.)

NOTE: The page generated from an extra template can also be accessed from a standard

Access Presence page using the VFURI or VFHref tags (see page 78).

Technical Reference Guide: User Interfaces Version 7.5.1

12 Chapter 3: Configuration files

Location

The file is identified by the configuration-file parameter webExtraTemplateFile

(see page 26).

Syntax

Each line in the extra template file identifies an extra template:

identifier%content_type%disposition% extraTemplate extraFormat

Where the % character is a delimiter, and:

• identifier is an alphanumeric string without any spaces.

• content_type is optional and identifies the content type (for example,

%text/xml) to appear in the HTTP content-type header of the page generated

from the template. If no content type is declared, the default %text/html applies.

If the content type is declared starting with %text/, then ;charset=... is

appended to the content-type header and the character encoding is set to UTF-8.

• disposition is optional and identifies the HTTP content-disposition header of the

page generated from the template. It can include spaces and quotation marks, but

cannot include a % character as this is used as a delimiter.

• extraTemplate is the path and name of a template file relative to the webdir

directory (by default, ${VFHOME}/webdir or %VFHOME%\webdir).

• extraFormat is optional and identifies the path and name of a template-specific

format file relative to the webdir directory (by default, ${VFHOME}/webdir or

%VFHOME%\webdir).

A path and name that contains space characters must be enclosed by double-quote or

apostrophe characters. These characters can be escaped using the backslash

character.

The extra template file contains a maximum of 25 identifiers. (This is because Access

Presence maps each identifier to a character between ‘b’ and ‘z’, which it then

includes in the URI for the subsequent Expanded Entry page.)

Examples

Consider the following entries in the extra template file:

treeExpanded /tmpl/altTmp/tree_expanded_entry.html

maxExpanded “/tmpl/altTmp/max detail.html”

minExpanded /tmpl/altTmp/min_detail.html min_formatFile

xmlHierarchy%text/xml /tmp/altTmp/xmler.xml

They declare three extra Expanded Entry templates identified by the strings

treeExpanded, maxExpanded and xmlHierarchy.

Now, consider the following Access Presence tag:

<VFWelcomeURI [id=*CHAR]>

This tag can be used in a template to generate a URI to the Welcome page:

<A HREF=”<VFWelcomeURI>”>Welcome page

It can also be used to identify an alternative Expanded Entry template to be included

in the URI:

<A HREF=”<VFWelcomeURI id=treeExpanded>”>My details

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 13

Access Presence will then use the template file tree_Expanded_Entry.html when

the user views the Expanded Entry page.

NOTE: To revert to the standard Expanded Entry page, a template must set the id argument

to ‘_default`.

The last example above, xmlHierarchy, is slightly different to the other two

examples. It defines that the MIME type to be generated from the template is XML.

MIME mapping file

The MIME mapping file defines MIME types to associate with attribute types. It allows

users to download attributes of any type to a file of the correct type.

Location

The location is set by the configuration-file parameter webAttMIMEMappingFile

(page 23).

Syntax

The file comprises one or more lines that take the following format:

entry ::= attributeReference wp mimeType [wp message]

 eol [tab disposition eol]

wp ::= ' ' | '\t'

eol ::= ['\r'] '\n'

attributeReference ::= attributeTypeName ["."

componentReference]

Where:

• attributeTypeName – the name of an attribute type.

• mimeType – the MIME type used as the content-type HTTP header when the

attribute value is downloaded to a browser.

• componentReference – the component reference of a field within the attribute

value. The component reference syntax is defined in the following RCF: Legg, S

(2004), LDAP & X.500 Component Matching Rules, http://tools.ietf.org/html/rfc3687.

A component reference allows any field within a syntax defined as an ASN.1 type to

be referenced.

• disposition – a string used as the content-disposition HTTP header when the

attribute value is downloaded to a browser.

• message – the message displayed in the browser to represent this attribute value.

The entries are evaluated in the order they occur in the file.

The attributeReference is a Boolean assertion on the attribute value. The first

entry with an assertion in the attributeReference that evaluates to true provides:

• an attribute-type name, which will match any value of the identified attribute;

• an attribute-type name with a component reference of a field in the value of the

attribute, which will match any value of the attribute in which the referenced field

is present;

• an attribute-type name with a component reference of a bit in a BitString field in the

attribute value, which will match any value of the attribute in which the referenced

BitString is present and the identified bit is set.

http://tools.ietf.org/html/rfc3687

Technical Reference Guide: User Interfaces Version 7.5.1

14 Chapter 3: Configuration files

The message field may contain some special character sequences, which Access

Presence will replace with certain values. These sequences are:

• %s – which will be replaced with the URI required to download the value. (Previous

versions of this file used a single % character for this purpose.)

• %{...} – where the braces contain a comma-separated list of component

references. This expression will be replaced by the string value of a field in the

attribute value identified by the component reference list. The component

references are evaluated from left to right until a reference to a field present in the

current value is found. Where the identified field is a string field, the string is

converted into an appropriate code page (currently ISO-8859-1); otherwise the field

is encoded into a string (of the appropriate code page) using the generic string

encoding rules described in the following RCF: Legg, S (2003), Generic String

Encoding Rules for ASN.1 Types, http://tools.ietf.org/html/rfc3641.

• %% – which will be replaced with an explicit % character.

The disposition field may also contain some special character sequences that

Access Presence will replace with certain values. The %{...} and %% character

sequences described for the message field are supported for the disposition field.

Examples

These three examples are from the MIME mapping file, att.mime, supplied with the

demonstration directory, Deltawing.

Example 1

This example tells Access Presence that attributes of the type photo should be

treated as the MIME type image/jpeg:

photo image/jpeg

Example 2

This example tells Access Presence to display attributes of type document as the

MIME type application/pdf.

document application/pdf

Example 3

This example maps the attribute type cACertificate:

cACertificate application/pkix-cert Download certificate for %{toBeSigned.subject.rdnSequence.-1.*.value}

application; filename="%{toBeSigned.subject.rdnSequence.-1.*.value}"

Where:

• cACertificate – the attribute type in the directory.

• application/pkix-cert – the MIME type.

• Download certificate for

%{toBeSigned.subject.rdnSequence.-1.*.value}

The component reference displayed by the browser.

• application; filename="%{toBeSigned.subject.rdnSequence.-

1.*.value}"

The disposition which defines the file name to which the certificate will be saved

when downloaded by the user.

http://tools.ietf.org/html/rfc3641

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 15

Post-processing command file

This file defines the processing to perform on an attribute value, and is used to

generate URIs from attribute values.

Location

The file’s location is set by the configuration-file parameter

webPostProcessCmdFile (see page 23).

Syntax

The file comprises one of more lines as follows:

attribute-name [output-string] [attribute-names]

Where:

• attribute-name – is the name of an attribute type.

• output-string – is the string to display in place of the attribute value.

• attribute-names – is a list of attributes whose values are substituted for ‘%’ or

‘$’ characters in output-string. A value substituted for a ‘%’ has characters that

are illegal in URIs suitably escaped, so use a ‘%’ is the value is to appear in a URL.

A value substituted for a ‘$’ is not altered.

For example (a single line):

telephoneNumber

"<A HREF=http://www.deltawing.com.au/call.acgi?BNUM=%&STYLE

=ST1&BNAME=%&BADDR =%&LANG=e>$" telephoneNumber commonName

location telephoneNumber

ViewDS configuration file

This section describes the parameters in the ViewDS configuration file that relate to

Access Presence. By default, the configuration file is ${VFHOME}/setup/config or

%VFHOME%\setup\config.

All paths specified by the parameters are either absolute or relative to the webdir

directory.

The parameters are grouped as follows:

• General parameters

• Authentication parameters

• Two-factor authentication parameters

• Search Form parameters

• Search Results parameters

• Search parameters

• Display and format parameters

• Image parameters

• Template location parameters

• Other template-related parameters

Technical Reference Guide: User Interfaces Version 7.5.1

16 Chapter 3: Configuration files

General parameters

dsaAddress The default base address and protocol for connections to

the DSA.

If Access Presence is installed on a different host to the one
running the DSA, the dsaAddress should be set to the

TCP/IP address and port of the DSA. However, if this is not
possible, the parameter webduaaddress can be set to an

address and protocol for Access Presence to use.

baseEntry The Distinguished Name (DN) of the subschema

administrative point in Stream DUA notation (see Technical

Reference Guide: Directory System Agent).

For example: baseentry = { O "Deltawing" }

This parameter allows Access Presence to retrieve schema

and DUA Presentation data. Access Presence also uses

this parameter as the default base entry for searches.

No default.

webdir The directory containing the Access Presence configuration

and data files.

Default: webdir = ${VFHOME}/webdir

webduaAddress The base address and protocol for connections to the DSA

by Access Presence. The parameter enables support for

OSI protocol connections over RFC1006, and can be set to

a lightweight stack address, IDM protocol address or OSI

protocol address.

If this parameter has been set, then it defines the protocol

and address that Access Presence uses to connect to the

DSA. Otherwise, Access Presence connects to the DSA

using the default protocol and address defined by the
dsaAddress.

webDUAParamPath The path of the directory where Access Presence stores

cached DUA Presentation information. This path must be

unique for each instance of Access Presence.

Default:

webDUAParamPath = ${VFHOME}/webdir/conf

webMaxRequests

PerServer

The maximum number of requests that an instance of

Access Presence will handle before it terminates and is

restarted.

Default: webMaxRequestsPerServer = 50

webCGITimeLimit The maximum number of seconds that an instance of

Access Presence will handle one request before it

terminates and is restarted.

Default: webCGITimeLimit = 120

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 17

webUseUuid Determines how Access Presence references entries in the

URLs it generates:

• on – use the entryUUID attribute (see RFC 4530) to

generate a URI to identify an entry. When the
entryUUID attribute is unavailable, the entry’s DN is

used.

• off – use the DN to generate a URI to identify an entry.

This is option is available for compatibility with ViewDS

prior to Version 7.0.

Default: webUseUuid = on

webSchemaArea The Distinguished Name of a schema administrative point

from which Access Presence obtains schema and

parameterisation information. This parameter is of use for

a distributed environment in which schema and

parameterisation information is unavailable in some

areas of the DIT.

There is no default for this parameter.

webcookiesecure A Boolean that defines whether the Secure property is set
for the VF_Pass, VF_TARGET_O and vds-session-id

cookies.

Default: webcookiesecure = off

websessionexpiry If websessionenabled = off, then this is an integer

value that, if greater than 0, represents the permitted
lifetime of the VF_Pass cookie in seconds. The default

value of 0 indicates that the cookie has an unlimited lifetime.

If websessionenabled = on, then this is an integer

value that represents the permitted lifetime of a log in

session in seconds. The default value of 28800 indicates

that the session has an 8 hour lifetime.

websessionenabled A Boolean that controls whether directory-based session

management is used. When this is set to on Access

Presence will use session objects stored in the directory.
The VF_Pass cookie will be deleted and a new cookie

called vds-session-id will be used that contains only a

randomly generated session identifier. This cookie will have

the HttpOnly attribute set and will have the Secure attribute
set if the webcookiesecure configuration file option is set

to on.

Default: websessionenabled = off

websessionuser A string containing the LDAP string encoded DN or the

username of the account Access Presence should use for

managing session objects in the directory.

This configuration file option is only required if
websessionenabled = on

Technical Reference Guide: User Interfaces Version 7.5.1

18 Chapter 3: Configuration files

websessionpassword A string containing the password of the account identified in
websessionuser.

This configuration file option is only required if
websessionenabled = on

websessioncleanup An integer that represents the maximum age in seconds of

session objects in the directory. This is used to clean-up

sessions managed by the directory. When Access Presence

adds or removes a session object for the current user, it

checks for any other session objects older than this period

and removes them.

Default: websessioncleanup = 86400 (24 hours)

Authentication parameters

webRequireLogin A Boolean that defines whether Access Presence performs

login authentication each time the directory is accessed.

Default: webRequireLogin = on

webBindUser Defines the user name and password that Access Presence

uses to bind to the directory. It is used if
webRequireLogin is off or webProxyUser is on.

Example: webBindUser = vfsuper passwd

webProxyUser A Boolean that enables proxy authentication.
Default: webProxyUser = off

webProxyAuth

Attribute

Access Presence uses this parameter to map an identity

determined by an external agent (such as a web server or a

SAML IdP) to an entry in the ViewDS directory. It is used
when webProxyUser is on or when a websamlentity is

specified.

Default: webProxyAuthAttribute = userName

websamlentity Defines the URI used to identify the Access Presence

service provider entity for external SAML2 authentication

(app_id_uri). If this configuration option is specified, then

SAML2 authentication, using the SAML2 Web SSO profile,

is enabled and the additional configuration options
websamlidpurl and websamltrustanchor must also

be provided.

websamlendpoint Identifies an optional call-back URL for Access Presence, to

be included in SAML2 authentication requests made by

Access Presence. If this configuration option is not

provided, then call-back information will not be included in

the SAML2 request and it is assumed that the SAML2

identity provider will be configured with an appropriate

default value. The SAML2 endpoint should be the URL of

Access Presence without any query string or subsequent

path components.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 19

websamlidpurl Defines the URL of the external SAML2 identity provider

authentication endpoint.

websamltrustanchor Specifies the file name of the certificate that Access

Presence should use to verify the signature on the SAML

assertions provided by the SAML2 identity provider. The

signature may be verified directly or through a certificate

path provided the intermediate certificates are included in

the X509Data element of the SAML2 assertion with the

signing certificate.

webAnonymous A Boolean that governs whether Access Presence requires

the user to provide authentication information to log in to the
directory. When this parameter is set to on, Access

Presence will not initially prompt for a user login. If it does
prompt for authentication information (see the VFAuthURI

tag on page 32), it will permit the Access button to be

selected without any information being provided in the other
input fields. The default setting for this parameter is off.

This parameter differs from webRequireLogin by

explicitly supporting anonymous logins, whether the

authentication form is used or not. It is recommended
that webRequireLogin is set to on when this parameter

is used.

Default: webAnonymous = off

webRemoteUser

Sets the name of the environment variable used by a web

server to pass an authenticated identity to a CGI during

proxy authorization (see page 149).

Default: webRemoteUser = REMOTE_USER

webUsePassword

Policy

A Boolean that defines whether Access Presence should

use password policy controls in requests.

Default: webUsePasswordpolicy = off

Technical Reference Guide: User Interfaces Version 7.5.1

20 Chapter 3: Configuration files

Two-factor authentication parameters

webSession

Authenticator

Specifies the attribute in a user’s entry that stores their

authenticator secret. The authenticator secret allows a user

to confirm a time-based one-time password (TOTP) from a

third-party authenticator, and therefore enable two-factor

authentication on their Access Presence account.

This attribute should be:

• Available to the account used for managing session-

state information.

• Single valued (multiple values are not supported).

• Protected by access controls so that its value is only

visible to the user and administrators responsible for

account management. It may be desirable to provide

access controls to allow applications to determine

whether the attribute is present (without revealing the

value) and therefore whether a user has enabled two-

factor authentication on their account.

Default: Not applicable

Search Form parameters

webSelectableField Determines whether the Search Form page present

search fields that are:

• restricted to one specific attribute (off)

• allow an attribute to be selected from a drop-down
list (on)

Additionally, if a set of possible values is declared for an
attribute in its schema, and this parameter is off, the

Search Form presents the values in a drop-down list. (See

Drop-down lists on page 36.)

Default: webSelectableField = on

webNumDefaultFields Defines the number of active search fields which Access

Presence will show on the Search Form page. An active

field is a field which has an attribute assigned to it. This
parameter is ignored if webSelectableField is off. Its

maximum value is 10.

Default: webNumDefaultFields = 5

webNumDisplayFields Defines the total number of search fields to display. If
webSelectableField is on, Access Presence will show

a number of inactive fields equal to webNumDisplayFields

minus webNumDefaultFields. Each inactive field is

labelled ‘-------’ in the search form. These are the extra

fields which the user can use if webNumDefaultFields

number of search fields are not enough for specifying his

or her query. Its maximum value is 10.

Default: webNumDisplayFields = 8

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 21

webUserOptions Determines whether Access Presence appends the

search options to the Search Form.

Default: webUserOptions = on

webForceLocalSchema Determines whether Access Presence uses the schema in

the default base entry if there is no schema under the

base entry associated the current Search Form.

Default: webForceLocalSchema = off

webRelatedSearch

Template

Specifies a template to be used instead of the Search

Form template during the related-entries workflow (see

page 152). When this parameter is unspecified, the
template specified by webSearchTemplate is used.

Search Results parameters

webRelatedSearch

ResultTemplate

Specifies a template used instead of the Search Results

template during the related-entries workflow (see

page 152). When this parameter is unspecified, the
template specified by webSearchRsultTemplate

is used.

webSortStrategy Specifies the algorithm used to sort the results displayed

on the Search Results page (see page 40). The

arguments are:

• sortKeys – sort the fields by the sort keys in the

Search Form. The sort key is defined through the
operational attribute searchOptions (see page 103)

– for example, through the ViewDS Management

Agent (see the help topic View or modify a Search

Form).

• searchFields – sort the fields using the first

completed field on the Search Form as the initial key,

then use the sort keys in the Search Form.

• firstValueExactMatch – start the results with any

entry where the first value of the search attribute

exactly matches the value entered in the Search Form.
Then, sort using the searchFields algorithm

described above.

• anyValueExactMatch – start the results with any

entry where any value of the search attribute exactly

matches the value entered in the Search Form. Then,
sort using the searchFields algorithm described

above.

Default:
webSortStrategy = firstValueExactMatch

Technical Reference Guide: User Interfaces Version 7.5.1

22 Chapter 3: Configuration files

pagedresultcachesize Specifies how many sets of paged search results can be

stored in cache.

When a user requests a search with paged results, the

first page of results is returned, and the set of remaining

results is stored in cache.

The least recently viewed set of results is discarded if:

• the number of sets in cache equals the value of this

parameter; and

• a user submits a request for paged search results.

When a single user has multiple sets of results in the

cache, their least recently viewed set is discarded if:

• the number of sets they have in cache is half or more

than the value of this parameter; and

• another user submits a request for paged search

results.

This prevents a user from monopolizing the cache.

Default: 6

Search parameters

These parameters define the search options when webUserOptions is off, and the

default values when webUserOptions is on.

webDefSizeLimit The default size limits. The size limit setting here is only

used if there is no user or system-wide setting stored in

the directory.

Default: webDefSizeLimit = 100

webDefTimeLimit Specifies the default time limits. The time limit setting

here is only used if there is no user or system-wide

setting stored in the directory.

Default: webDefTimeLimit = 10

webShowDetail Determines whether Access Presence allows the ‘expand’

operation for the entries returned from a successful
search. It overrides webDetailOnSingleMatch.

Default: webShowDetail = on

webShow

= {Sub | SubAndLeaves

| Icon | IconAndLabel

| All}

This parameter defines what is displayed by the

Expanded Entry page.

The arguments are:

• Sub: display all non-leaf entries one level down from

the expanded entry.

• SubAndLeaves: display all entries one level down

from the expanded entry.

• Icon: use descriptive icons only as labels to the

entry’s attributes.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 23

• IconAndLabel: use both icon and text description

as labels to the entry’s attributes.

• All: all of the above options apply.

All the above options except All may be used together

on the same line. By default, none of the options are set.

Example: webShow = All

webDetailOnSingle

Match

Determines whether Access Presence automatically

expands an entry if it is the only match returned by a

search.

Default: webDetailOnSingleMatch = on

webDefExactMatch Determines whether Access Presence does normal
approximate matches the first time (off); or whether it

does an exact match search, and if there are no

matches, follows this with an approximate match search.

This two-stage search gives a faster response with large

databases.

Default: webDefExactMatch = off

Display and format parameters

webAttMIMEMappingFile The path (relative to the webdir directory) to the MIME

mapping file (see page 13).

webPostProcessCmdFile The path (relative to the webdir directory) to the Post-

processing command file (see page 15).

webTargetObject =

on | off

Controls whether the target-object links (see Target-
object on page 66) are displayed to all users (on) or just

those with either of the following (off):

• the super-user privilege of ViewDS Access Control

(see the ViewDS Management Agent help topic Set

the ViewDS Access Control for an entry).

• the Printing capability of the default entitlements (see

the ViewDS Management Agent help topic View or

modify default entitlements for DUA users).

Image parameters

All images should be .gif files for general compatibility.

webBackGroundPic Path and file name for the background image displayed

by the Access Presence pages.

webHeaderPic Path and file name for the header image displayed on all

Access Presence pages.

webHeaderPicDesc Text description of the header image (for text-only

browsers).

Technical Reference Guide: User Interfaces Version 7.5.1

24 Chapter 3: Configuration files

webFooterPic Path and file name for the footer image displayed on all

Access Presence pages.

webFooterPicDesc Text description of the footer image (for text-only

browsers).

Template location parameters

The default Access Presence pages are built-in. However, their equivalent HTML

source is provided under the ‘suggested’ file names below.

webAuthTemplate Authentication template (page 30) path and file name.

Suggested: webAuthTemplate =

tmpl/auth.html

WebEnableAuthenicator

Template

Enable Two-Factor Authentication template (see

page 32) path and file name.

Suggested: Not applicable

WebDisableAuthenicator

Template

Disable Two-Factor Authentication template (see

page 33) path and file name.

Suggested: Not applicable

WebAuthenicatorTemplate Two-Factor Authentication template (see page 33)

path and file name.

Suggested: Not applicable

webWelcomeTemplate Welcome template (see page 34) path and file name.

Suggested: webWelcomeTemplate =

tmpl/wel.html

webSearchTemplate Search Forms template (see page 36) path and file

name.

Suggested: webSearchTemplate = tmpl/s.html

WebSearchResultTemplate Search Results template (see page 40) path and file

name.

Suggested: webSearchResultTemplate =

tmpl/sr.html

WebExpandResultTemplate Expanded Entry template (see page 45) path and file

name.

Suggested: webExpandResultTemplate =

tmpl/er.html

webErrorTemplate Error template (see page 51) path and file name.

Suggested: webErrorTemplate =

tmpl/error.html

webModifyTemplate Modify template (see page 56) path and file name.

Suggested: webModifyTemplate =

tmpl/mod.html

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 25

webModifyValueTemplate Modify Value template (see page 58). path and file

name.

Suggested: webModifyValueTemplate =

tmpl/modval.html

webAddTemplate Add template (see page 58) path and file name.

Suggested: webAddTemplate = tmpl/add.html

webPrintFormTemplate Print Form template (see page 60) path and file name.

Suggested: webPrintFormTemplate =

tmpl/pf.html

webPrintTemplate Print template (see page 62) path and file name.

Suggested: webPrintTemplate = tmpl/pr.html

webNewPasswordTemplate New Password template (see page 62) path and file

name.

Suggested: webNewPasswordTemplate =

tmpl/npw.html

webAssignPassword

Template

Assign Password template (see page 63) path and file

name.

Suggested: webAssignPasswordTemplate =

tmpl/apw.html

webGlobalChangeRequest

Template

Global Change Request template (see page 64) path

and file name.

Suggested: webGlobalChangeRequestTemplate

= tmpl/gcrequest.html

webGlobalChangeConfirm

Template

Global Change Confirm (see page 65) path and file

name.

Suggested: webGlobalChangeConfirmTemplate

= tmpl/gcconfirm.html

webGlobalChangeResult

Template

Global Change Results (see page 65) path and file

name.

Suggested: webGlobalChangeResultTemplate =

tmpl/gcresult.html

WebShowTargetObjects

Template

Show Target Objects template (see page 67) path and

file name.

Suggested: webShowTargetObjectsTemplate =

tmpl/showtarget.html

webSelectTargetObject

Template

Select Target Object template (see page 68) path and

file name.

Suggested: webSelectTargetObjectTemplate =

tmpl/selecttarget.html

webSelectImports

Template

Select Entries to Import template (see page 69) path

and file name.

Suggested: webSelectImportsTemplate =

tmpl/selectimports.html

Technical Reference Guide: User Interfaces Version 7.5.1

26 Chapter 3: Configuration files

webSelectRemovals

Template

Select Entries to Remove template (see page 69) path

and file name.

Suggested: webSelectRemovalsTemplate =

tmpl/selectremovals.html

WebAltAddSelection

Template

Select Entries to Add to Alternative Hierarchy

template (see page 70) path and file name.

Suggested: WebAltAddSelectionTemplate =

tmpl/altaddselection.html

webAltMoveSelection

Template

Select Entries to Move in Alternative Hierarchy

template (see page 71) path and file name.

Suggested: webAltMoveSelectionTemplate =

tmpl/altmoveselection.html

webRequestRemoveentry

Template

Request Remove Entry template (see page 63) path

and file name.

Suggested: webRequestRemoveEntryTemplate =

tmpl/requestremoveentry.html

Other template-related parameters

defaultCharSet

= character_set

Deprecated.

webTemplAttribute

= attribute_name

This parameter allows an alternative Expanded Entry

template to be invoked for a specific directory entry.

The entry must include an attribute whose name
matches the value of the webTemplAttribute

parameter. The value of this attribute should be the

name of the alternative Expanded Entry template to

be invoked.

For example, consider a directory entry that includes
the attribute specialTemplate whose value is the

name of an Expanded Entry template for people in the

Finance Department:

specialTemplate = tmpl/financeExpEntry

To invoke the template, the webTemplAttribute

parameter must be set to the name of the above

attribute:

webTemplAttribute = specialTemplate

Different entries can include the specialTemplate

attribute with values that invoke different templates.

webExtraTemplateFile The path (relative to the webdir directory) to the

Extra template file (see page 11). For Deltawing, the
default is: tmpl/extra.lst

webFormatFile The path (relative to the webdir directory) to the

format file (see page 73).

A supplied example is: tmpl/format.lst

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 3: Configuration files 27

webstartpage Declares which page is displayed after a user has

been authenticated.

By default, a user authenticates by entering their user

name and password on the Authentication page, and

Access Presence then displays the Welcome page.

This default behaviour can be changed by setting the
webstartpage parameter to one of the following

arguments:

• search – the Search Form is displayed after

authentication

• baseentry – the Expanded Entry page for the

base entry is displayed after authentication

• userentry – the Expanded Entry page for the

authenticated user is displayed after authentication

(if there is no entry for the user, the base entry is

displayed)

If this parameter is not declared (or set to welcome)

the default behaviour applies.

Additional Access Presence files

The demonstration directory, Deltawing, uses additional files in the following locations:

• webdir/help – this directory contains help files for Access Presence.

• webdir/icons/newicons – this directory contains icons that are included in

Expanded Entry pages.

• webdir/tmpl – this directory contains the sample templates described in Chapter 4.

Configuring for printing

A user can invoke a Printing DUA input script from a menu on the Print Form page

(see page 60) and to select a base object for the script.

The content of the menu is configured in the following file:

${VFHOME}/setup/printconfig

Each line of this file contains the following fields in this order, separated by the \

character:

• label – a descriptive label for the report

• script name – the name of the PDUA script used to extract the data form the report

(in ${VFHOME}/print).

• post processing script – the name of an optional Shell script to process the

extracted data (in ${VFHOME}/print). This field may be empty.

• content type – the Content-Type value to use when delivering the report to the

browser. This field may be empty.

• content disposition – the Content-Disposition value to use when delivering the

report to the browser. This field may be empty.

The supplied printconfig file lists the supplied scripts (see Chapter 8).

Technical Reference Guide: User Interfaces Version 7.5.1

28 Chapter 3: Configuration files

Configuring for global changes

Before an Access Presence user can apply global changes to the values of attributes,

you must configure the ViewDS DSA to enable this functionality. You can configure

the DSA using either the Stream DUA or ViewDS Management Agent.

For the ViewDS Management Agent, see the help topic Configure for global changes.

For the Stream DUA:

1. Enable an attribute for global changes by setting its globallyChangeable flag

in the operational attribute attributePresentation (see page 90).

2. Allow users to apply global changes by setting the globalChanges flag in either

defaultEntitlement (see page 108) or userEntitlement (see page 117).

 29

Chapter 4

 Access Presence

templates

This chapter describes the Access Presence templates and tags. It includes example

code from the demonstration directory supplied with ViewDS, Deltawing. For information

about using Deltawing, see the ViewDS Directory: Installation and Operation Guide.

This chapter has the following sections:

• Common tags and arguments

• Authentication template

• Two-factor authentication templates

• Welcome template

• Search Forms template

• Search Results template

• Expanded Entry template

• Error template

• Modify template

• Modify Value Form template

• Print Form template

• Print template

• New Password template

• Assign Password template

• Request Remove Entry template

• Global changes templates

• Target-object cache templates

The file names and locations of the Access Presence templates are set in the ViewDS

configuration file (see Template location parameters on page 24).

Technical Reference Guide: User Interfaces Version 7.5.1

30 Chapter 4: Access Presence templates

Common tags and arguments

Common template tags

These tags can be used in any Access Presence template, except the Authentication

template.

<VFUserID>

This tag is replaced by the display name of the user currently logged in.

<VFPasswordPolicyExpiry [before=1*CHAR] [after=1*CHAR]>

This tag is replaced by the number of seconds until the current user's password is due

to expire and the account is locked. It generates values only when the password policy

indicates that a password is due to expire. The tag takes two optional arguments

before and after which can be used to provide HTML that will be put before and

after the tag value.

<VFPasswordPolicyGraceLogins [before=1*CHAR] [

after=1*CHAR] >

This tag is replaced by the number of grace logins permitted for the current user

before their account is locked. Grace logins are provided after a password expires to

permit the user to change their password. The tag generates values only when a

password has expired and the grace logins apply. It takes two optional arguments

before and after which can be used to provide HTML that will be put before and

after the tag value.

<VFUserURI [id=*CHAR]>

This tag is replaced by the URI for the Expanded Entry page displaying the entry for

the currently authorized user.

The id argument is common to many tags and is described on page 31.

<VFDN>

This tag is replaced by the LDAP DN of the entry currently displayed by the Expanded

Entry page.

<VFSetSearchForm name=1*CHAR>

This tag allows the Search Form to be specified in a template. Within the scope of the

VFSetSearchForm tag, the Search Form selected on the Welcome page is

overridden by the Search Form specified in the tag’s name argument.

The block must be terminated with an end tag:

<VFSetSearchForm name=”Name Search”>

 <form action=”<VFSearchURI>”>

 <!-- HTML for simple search form -->

 </form>

</VFSetSearchForm>

<VFBaseDNURI [id=*CHAR]>

This tag is replaced by the URI required to access the Expanded Entry page for the

base object.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 31

Common arguments

The following arguments are common to many template tags.

id

The id argument identifies an alternative Expanded Entry template to be included in

the URI generated by the tag it appears in. The id for the alternative template must

be declared in the extra template file (see Extra template file on page 11).

To revert to having the standard Expanded Entry template in the URI, set the id to

’_default’.

html

The html argument should be enclosed in backquotes and should include all the text

to appear between the opening <A HREF and the closing .

To illustrate, the following example would display the text ‘Set Password’ linked to the

Assign Password page:

<VFAssPassFormHref html=”>Set Password”>

The default value of the html argument is >.

confirm

The confirm argument invokes a confirmation dialog when the link generated by its

tag is selected by a user.

format

This argument identifies a set of format directives in the format file (see page 73). The

directives are applied to the information generated by the tag that includes the

format argument.

scope

This argument changes the scope of a tag. It can be set to:

• base – the scope is the base entry and its subordinates.

• user – the scope is the entry for the user viewing the page and its subordinates.

Alternatively, it can be set to a specific entry identified by either:

• the value of the entry’s entryUUID attribute; or

• the LDAP string representation of the entry’s Distinguished Name.

Authentication template

This template generates a web page that allows a user to enter either their

Distinguished Name or user name plus their password.

The template includes a form containing four Access Presence tags, which are

described below.

<form method=post action="<VFAuthURI>">

 Username: <input name="<VFAuthUserNameID>">

 Password: <input type=password NAME="<VFAuthUserPassID>">

 <VFAuthReferer>

 <input type=submit value="Access">

</form>

Technical Reference Guide: User Interfaces Version 7.5.1

32 Chapter 4: Access Presence templates

<VFAuthURI [id=*CHAR]>

This tag is replaced by a Uniform Resource Identifier (URI) for the Authentication

page. The id argument is common to many tags and is described on page 31.

<VFAuthUserNameID>

This tag gives the value for the HTML NAME element in the user-name input tag.

<VFAuthUserPassID>

This tag gives the value for the HTML NAME element in the password input tag.

<VFAuthReferer>

This tag ensures that Access Presence returns to the page the user was attempting to

view before authentication. The tag is replaced by an HTML input element:

<input type=‘hidden’ name=‘referrer’ value=URL>

The value is equal to the URL for the page the user was attempting to view.

Two-factor authentication templates

This advanced feature is not available to users in the default implementation of

Access Presence. For further information see Configuring for two-factor authentication

on page 157.

There are three templates for two-factor authentication:

• Enable Two-Factor Authentication template

• Disable Two-Factor Authenticator template

• Two-Factor Authentication template

Enable Two-Factor Authentication template

This template allows the user to enable two-factor authentication for their Access

Presence account. It presents a ‘secret code’ that the user provides to a third-party

authenticator app to generate a time-based one-time password (TOTP). The user then

submits the TOTP through this template to enable two-factor authentication.

<VFEnableAuthenticatorFormHref [id=*CHAR] [html=1*CHAR]>

This tag is replaced by a hypertext link to the Enable Authenticator page. Access to

the page is not part of the default Access Presence configuration.

The html and id arguments are common to many tags and are described on

page ß31.

<VFAuthenticatorEnableForm></VFAuthenticatorEnableForm>

This template tag is replaced by an HTML form element. Any additional parameters

declared for the tag are added to the form as HTML attributes (for example, class).

The tag should contain the two template tags shown below.

<VFAuthenticatorEnableForm>

 <VFAuthenticatorSecretInput>

 <VFAuthenticatorCodeInput>

</VFAuthenticatorEnableForm>

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 33

<VFAuthenticatorSecretInput [otpuri=1|0]>

This tag is replaced by a read-only HTML input element. It displays a randomly

generated ‘secret code’ that allows the user to set up with a third-party authenticator

service and obtain an TOTP.

The tag has an optional parameter, otpuri, with an integer value:

• ‘0’ (or omitted) – the ‘secret code’ is displayed as text.

• non-zero integer – a link is displayed using the OTPauth URI scheme. This is

recognized by some authenticator services, including Google Authenicator which

presents an OTPauth URI to the user as a QR code.

Any additional parameters declared for the tag are added to the HTML input element

as HTML attributes (for example, class).

<VFAuthenticatorCodeInput>

This tag is replaced by an HMTL text-input element, which allows the user to enter

their TOTP into the template’s form. On submission, ViewDS uses the TOTP to verify

that the authenticator app has been set up correctly before activating two-factor

authentication for the user.

Disable Two-Factor Authentication template

This template allows the user to disable two-factor authentication on their Access

Presence account.

<VFDisableAuthenticatorFormHref [id=*CHAR] [html=1*CHAR]>

This tag is replaced by a hypertext link to the Disable Authenticator page. Access to

the page is not part of the default Access Presence configuration.

The html and id arguments are common to many tags and are described on

page 31. Any additional HTML attributes declared for this tag are added to the HTML

form tag that replaces it.

<VFAuthenticatorDisableForm></VFAuthenticatorDisableForm>

This template tag is replaced by an HTML form element. Any additional parameters

declared for the tag are added to the form as attributes.

When a user submits the form, two-factor authentication is disabled for their account.

Two-Factor Authentication template

This template presents a form that allows the user to enter a TOTP generated by a

third-party authenticator app (for example, Google Authenticate). The form should

include the following tags.

<VFAuthenticatorURI [id=*CHAR]>

This tag produces the URI of the authenticator page.

It should be used to generate the ACTION parameter value for the template’s form and

its method should be set to post.

<form method="post" action="<VFAuthenticatorURI>">

The id argument is common to many tags and is described on page 31.

This tag can also be used in the format file (see page 73).

Technical Reference Guide: User Interfaces Version 7.5.1

34 Chapter 4: Access Presence templates

<VFAuthenticatorID>

This tag is the value of the name field in the HTML input tag for the user’s TOTP.

<input name="<VFAuthenticatorID>" type="password" size="10">

The type field should be set to password so that the user’s authentication code is

not displayed on the screen.

This tag can also be used in the format file (see page 73).

Welcome template

This template generates the Welcome page. By default, this is the first page displayed

after a user has been authenticated.

NOTE: The configuration-file parameter webstartpage (see page 27) can be used to

declare another page as the first to be displayed after a user has been authenticated.

The Welcome page displays a list of Search Forms from which the user can select.

The Search Forms are declared through either:

• ViewDS Management Agent – see the help topic View or modify a Search Form

• Stream DUA – see the operational attribute searchOptions on page 103

The Access Presence tags in the template are included in the following code, and

each is described below.

<VFBanner>

Version: <VFVersion>

<form method="post" action="<VFSearchFormURI>">

 <VFSearchFormList>

 <input type="submit" value="Access">

</form>

<VFBanner>

This tag is replaced by the contents of the ‘Startup Message’ box in the Banners tab of

the ViewDS Management Agent (see the help topic View or modify DUA banners).

This value is stored in the startup-message argument of the operational attribute

duaBanners (see page 89).

If no startup message is defined, the following default is displayed: Welcome to

ViewDS Web edition.

NOTE: This tag can also be used in three other templates – Search Form, Search Results

and Expanded Entry. In each, the tag is replaced by a different message.

<VFVersion>

This tag is replaced by the version of Access Presence that is running.

<VFSearchFormURI [restricted= {user | base | *CHAR}]

[id=*CHAR]>

This tag is replaced by the URI for the Search Form selected by the user. It can be

used in any Access Presence template.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 35

restricted

The restricted argument can be used to set the base entry for the Search Form:

• user – the base entry for the search is the entry for the user who is viewing the

Search Form.

• base – the base entry for the search is the base entry of the DIT.

• *CHAR – the base entry is a specific entry identified by either the value of the

entry’s entryUUID attribute; or the LDAP string representation of the entry’s

Distinguished Name.

• no value – if restricted is declared without a value, the base entry for the search

will be the current entry.

When restricted is not declared, the base object is the default base object for the

Search Form. This is the base object defined in the Search Form definition if present;

otherwise, it is the base object of the Access Presence set by the configuration-file

parameter baseentry (see page 16).

id

This argument is common to many tags and is described on page 31.

<VFSearchFormList [showdn] [useScript=1*CHAR]>

This tag is replaced by a drop-down list containing names of available Search Forms.

The available Search Forms are declared through either the ViewDS Management

Agent (see help topic View or modify a Search Form) or the Stream DUA (see

searchOptions on page 103).

showdn

If showdn is specified, the base entry is displayed in LDAP DN string representation

before the name of each Search Form in the list.

useScript

This argument invokes a call to a script function when the user selects a Search Form.

The script function is identified by the argument’s value.

The argument should be within a <script> tag with the language set to

text/javascript (or a scripting type that supports a compatible syntax). Access

Presence generates parameter values that are escaped for Javascript string content.

The call has the following format:

func(index, name, baseEntry, url)

Where:

• func – the value of the useScript argument.

• index – an integer that identifies a Search Form by its position in the sequence of

Search Forms defined.

• name – a string which is the name of a Search Form.

• baseEntry – an LDAP string representation of the DN of the base entry in the

Search Form.

• url – the URL required to access the Search Form.

Technical Reference Guide: User Interfaces Version 7.5.1

36 Chapter 4: Access Presence templates

<VFWelcomeURI [id=*CHAR]>

This tag generates the URI for the Welcome page, and can be used as the value of a

HREF attribute in an HTML anchor tag.

The id argument is common to many tags and is described on page 31.

Search Forms template

This template generates a page that allows users to search the directory using the

Search Form they selected on the Welcome page.

The query input fields must be written using the HTML <FORM> and <INPUT> tags.

Both POST and GET submit methods are supported, although the POST method is

preferred.

Managing and defining Search Forms

The DSA stores definitions of each Search Form displayed by the Search Forms

page. The definitions also describe how the results of a search are sorted and

displayed by the Search Results page.

The Search Forms definitions are declared through either:

• ViewDS Management Agent – see the help topic View or modify a Search Form

• Stream DUA – see the operational attribute searchOptions on page 103

Drop-down lists

The Search Form page can be configured to present the available search attributes in

drop-down boxes. It can also be configured to present an attribute’s permitted values

in a drop-down list.

To present search attributes in a drop-down list:

• switch on the configuration-file parameter webSelectableField (see page 20)

To present an attribute’s permitted values in a drop-down box:

• switch off the configuration-file parameter webSelectableField (see page 20)

• ensure that the permitted values are defined as the constrained or enumerated

attribute syntax or as a result of CompareWords pre-processing function

• ensure that the attribute is not overloaded – that is, in the ViewDS Management

Agent, all values in the ‘column’ box of the Row Attributes window are unique (see

the help topic View or modify a Search Form).

Attribute ID

When Access Presence starts up, it obtains DUA presentation information from

the base entry in the directory. It looks at the first type of SearchForm in the

searchOptions operational attribute and assigns each attribute listed in the row1-

atts, row2-atts, and row3-atts attribute lists an ascending number starting

from 0. These numbers – each referred to as an attribute ID – are used by Access

Presence to name each field.

The attributes in each row of a Search Form can be managed through the

Stream DUA or ViewDS Management Agent (see the help task View or modify

a Search Form).

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 37

To illustrate how attribute IDs are used, consider the following attributes:

Attribute Name ID

Surname 0

Given 1

A following sample query input uses the attribute IDs and FORM tag with the POST

method:

<form method="post" action="<VFSearchURI>">

 Surname: <input name="0">

 Given: <input name ="1">

 Press <input type="submit" name="<VFDoSearchID>" value="here">

 to submit the query.

</form>

Alternatively, a template that supports only one Search Form can identify attributes

using their names:

<form method="post" action="<VFSearchURI>">

 Surname: <input name="commonName">

 Given: <input name="organizationalUnitName">

 Press <input type="submit" name="<VFDoSearchID>" value="here">

 to submit the query.

</form>

Template tags

The Access Presence tags in the template are included in the following example code:

<form method="post" action="<VFSearchURI>">

 <VFSearchFields>

 <input type="image" src="../icons/b_show.gif"

 name="<VFDoSearchID>" VALUE="[Search]" border=0>

 <a href=<VFSearchFormURI><IMG SRC="../icons/b_clear.gif" alt="

 [Clear]" border=0>

 < input type=image src="../icons/b_scontx.gif"

 name="<VFSetContextID>" VALUE="[Set Search Context]" border=0>

 <input type=image src="../icons/b_ccontx.gif"

 name="<VFClearContextID>" VALUE="[Clear Search Context]" border=0>

<hr>

 <VFSearchOptions>

</form>

The above tags, plus others that can appear in this template, are described below.

<VFSearchURI [restricted= {user | base | *CHAR}]

[id=*CHAR]>

This tag must be the value of the HTML ACTION tag in a form, and is replaced by the

URI for the Search Form page. Alternatively, when it is returned in a form, the tag tells

Access Presence to perform a search and output the results.

The restricted argument is described on page 35.

The id argument is described on page 31.

Technical Reference Guide: User Interfaces Version 7.5.1

38 Chapter 4: Access Presence templates

<VFSearchFieldVal [id=1*DIGIT] [spacing=1*DIGIT]>

This tag is replaced by the display name of the next attribute in the list of attributes in

the Search Form. (To view or modify a display name, see the ViewDS Management

Agent’s help topic View or modify an attribute’s DUA presentation.) The id argument

allows an attribute to be identified by either its name or attribute ID (see page 36).

spacing

The spacing argument specifies a field width for the display name. If spacing is

less than the length of the display name, but not zero, Access Presence truncates the

display name to fit the specified width.

By default, the display name is right justified – for left justified specify a negative value

for spacing.

<VFSearchFields [selectable = { on | off }]

[columns = 1*DIGIT]>

This tag is replaced by the default search fields defined in the selected Search Form.

selectable

If selectable is on, the field names for the search attributes are displayed in drop-

down list boxes (see page 36) and can be selected by the user. This argument

overrides the default behaviour set by the configuration-file parameter

webSelectableField (see page 20).

columns

This argument specifies the number of columns in which the search fields are

displayed. If the argument is unspecified, the default of two columns applies.

<VFSearchOptions>

This tag is replaced by input boxes, drop-down lists and a check-box to allow the user

to select the following search options (see Search Form parameters on page 20):

• maximum number of entries to return

• maximum time per query

• whether to show subordinates and leaves

• whether to show icons and labels

• whether to show full details if there is a single match

<VFDoSearchID>

This tag tells Access Presence to output the name for the submit field that will initiate

the search. It should be used to generate the NAME parameter value of an INPUT field

with TYPE=“submit”.

<VFBanner>

This tag is replaced by the contents of the ‘Start Banner 1’ box in the Banners tab of

the ViewDS Management Agent (see the help topic View or modify DUA banners).

This value is stored in the start-banner1 argument of the operational attribute

duaBanners (see page 89).

NOTE: This tag can also be used in three other templates – Welcome, Search Results and

Expanded Entry. In each, the tag is replaced by a different message.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 39

<VFSearchFormName>

This is replaced by the name of the currently selected Search Form.

<VFSearchFormURI>

This tag is replaced by the URI for the Search Form. It can be used in any Access

Presence template to provide navigation to the Search Form.

<VFLDAPQueryURI [restricted= {user | base | *CHAR}]>

This tag is replaced by a URI that allows an LDAP filter string to be submitted. The tag

should be the value for the ACTION attribute in an HTML FORM; the METHOD attribute

of the FORM must be set to POST.

The VFLDAPQueryURI tag should be used in conjunction with VFLDAPQueryID.

The restricted argument is described on page 35.

<VFLDAPQueryID>

This tag identifies an LDAP filter string. It should be the value of the NAME attribute in

an HTML INPUT tag. The INPUT tag should be text field.

The VFLDAPQueryID tag should be used in conjunction with VFLDAPQueryURI.

Search-context tags

These tags relate to context attributes (see page 8).

To support the context attributes, the Search Form needs to display the existing

values stored by the user. (This is done automatically by the default Search Form

generated by the <VFSearchFields> tag.) The Search Form template uses the

following tags that relate to context attributes.

<VFSetContextID>

This is replaced by the name for the submit field that will initiate the set context

operation. It should be used to generate the NAME parameter value of an INPUT field

with TYPE=“submit”.

<VFClearContextID>

This is replaced by the name for the submit field that will initiate the clear-context

operation. It should be used to generate the NAME parameter value of an INPUT field

with TYPE=“submit”.

<VFSearchField name=1*CHAR [id=1*CHAR]

[html=`1*CHAR`]>

This tag is replaced by the display name for the search field.

name

If the name argument is an attribute type or numeric identifier, the next attribute from

the Search Form is displayed.

Alternatively, if the name argument is an arbitrary string (neither an attribute-type

name nor a numeric identifier), this element generates a list box containing the

attributes permitted on the Search Form. In this case, the id argument can be used

to identify the attribute to be selected by default in the list box. Otherwise, no attribute

Technical Reference Guide: User Interfaces Version 7.5.1

40 Chapter 4: Access Presence templates

is selected by default unless the search field is displaying an attribute from the user’s

search context.

html

The html argument allows extra parameters to be declared for the SELECT tag that

generates the list box.

<VFQueryFieldVal name=1*CHAR [id=1*CHAR] >

This tag is replaced by the stored search-context value for a search field.

NOTE: This tag can also appear with a different syntax in the Search Results template.

name

The name argument identifies an attribute type in the search context to be associated

with the search field. It is matched with the attribute type of a VFSearchField tag.

id

The id argument should match the id argument of the corresponding

VFSearchField tag.

Search Results template

The Search Result template generates a page that presents the results of a search to

the user. The results are presented in a table, each row containing a directory entry.

The DSA stores Search Form definitions, which also define the sort key for the results

on the Search Results page. The sort key is defined through either:

• ViewDS Management Agent – in the Results Sorting area of the Edit Search Form

window (see the help topic View or modify a Search Form)

• Stream DUA – see the operational attribute searchOptions see page 103

The sort algorithm used is set through the configuration-file parameter

websortstrategy (see page 21).

<VFQueryFieldVal id=1*DIGIT [spacing=1*DIGIT]>

This tag is replaced by the value entered by the user in the Search Form for the

search field identified by the id argument. The id argument identifies an attribute by

either its name or attribute ID (see page 36).

The spacing argument specifies a field width for the search-field value. If spacing

is less than the length of the search-field value, but not zero, Access Presence

truncates the search-field value to fit the specified width. By default, the value is right

justified – for left justified specify a negative value for spacing.

NOTE: This tag can only be used in the Search Results template.

<VFSearchNumResult>

This tag is replaced by the number of matching entries returned by the most recent

search.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 41

<VFSearchResHeader [format=1*CHAR]>

This tag is replaced by the display names of all requested search fields in the

following format:

Field1: Field2: Field3:.....etc

An alternative format can be imposed by setting the format element to an identifier

declared in the format file (see page 73). To view or modify a display name, see the

ViewDS Management Agent’s help topic View or modify an attribute’s DUA

presentation.

NOTE: The order in which the fields are displayed is the same as the order of the input fields

specified in the Search Form.

<VFSearchResult [useScript=1*CHAR]

[format=1*CHAR] [alwaysFormat=on|off]>

This tag is replaced by all matched results in, by default, a tabular format.

If the configuration-file parameter webShowDetail (see page 22) is set to on:

• for each matched result, the full DN is returned as an HTML reference attached to

the result’s first attribute.

• each RDN in the DN is formatted as an ‘attribute=value’ pair, and each RDN is

separated by the & symbol.

• RDNs are in ascending (LDAP) order.

• the value in the RDN is escaped so that all ‘\”’;,%?+&/:#<>’ characters and non-

printable characters in the string are mapped to their hex equivalent in the ASCII

character set.

• in some cases, where the attribute contains multiple values, each value is escaped

as required and separated by the ^ symbol which is encoded as %2B.

For example, the name { O "Deltawing"/ OU "Some unit" OU "Asia" } is

encoded as:

<http://host:port/e.x500/&OU=Some%20unit%2BOU=Asia,&O=Deltawing>

useScript

This argument invokes a call to a script function that displays the search results. The

script function is identified by the argument’s value, and is invoked for each value

of each row1 attribute (of the current Search Form) and for each entry in the

search results.

The argument should be within a <script> tag with the language set to

text/javascript (or a scripting type that supports a compatible syntax). Access

Presence generates parameter values that are escaped for Javascript string content.

The call has the following format:

func(index, objectClass, href, attName, attVal, objDisplayName,

attDisplayName)

Where the output depends on the setting of the configuration-file parameter webShow

(see page 22) and Search Form settings:

• func – value of the useScript parameter

• index – incremental index of entries in the search result 0..n

Technical Reference Guide: User Interfaces Version 7.5.1

42 Chapter 4: Access Presence templates

• objectClass – the object class of the search result entry

• href – HREF of search result entry

• attName – attribute name

• attVal – attribute value

• objDisplayName – the display name defined for the object class

• attDisplayName – the display name defined for the attribute type

alwaysFormat

When this argument is on, the formatting information is generated for all row1

attributes, even when there are no values for the current attribute in the current search

result entry. The default behaviour will only generate formatting information when

values exist.

By default, this argument is set to off.

format

This argument identifies a set of format directives in the format file (see page 73) to be

used to generate the Search Result.

<VFQueryFields>

This tag is replaced by a brief summary of the user's input.

For example, if the user enters sherma in the surname search field and an a in the

givenName search field, the output will be as follows:

surname="sherma" & givenName="a"

<VFBanner>

This tag is replaced by the contents of the ‘Search Banner’ box in the Banners tab of

the ViewDS Management Agent (see the help topic View or modify DUA banners).

This value is stored in the search-banner argument of the operational attribute

duaBanners (see page 89).

NOTE: This tag can also be used in three other templates – Welcome, Search Form and

Expanded Entry. In each, the tag is replaced by a different message.

<VFRelatedEntryInput [format=*CHAR]>

During the related-entry workflow (see page 152), Access Presence replaces

VFRelatedEntryInput with an HTML INPUT tag and assigns it a name and value.

All attributes declared within the VFRelatedEntryInput tag are copied to this

replacement INPUT tag.

For example, the following tag would be replaced by an INPUT tag with an image:

<VFRelatedEntryInput type="image" src="../icons/b_new.gif">

The format attribute references a set of formatting directives in the format file (see

page 73). Only the StartEntry and EndEntry directives are available for this tag.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 43

<VFRelatedEntryForm> </VFRelatedEntryForm>

This tag block is of use in a Search Results template defined specifically for the

related-entry workflow (see page 152).

The related-entry workflow can use either the normal Search Results template or a

Search Results template developed specifically for the workflow. The tag block is

ignored when it appears in a Search Results template and it is not currently being

used in the related-entry workflow. This allows the same Search Results template to

be used for the workflow and normal operation.

The tags within the block provide the links required by the workflow to allow the user

to add a new role or entry. The links are ‘add alternative class’ and ‘add new entry’.

Examples

The following example results in an Add button being displayed next to each entry in

the Search Results page. The Add button invokes the Modify page, which allows the

user to associate the alternative class (such as an organizationalRole) with an

entry.

<VFRelatedEntryForm>

 <VFSearchResults>

</VFRelatedEntryForm>

NOTE: The above example does not work for Microsoft Internet Explorer (IE). This is because

the VFSearchResults tag is replaced by an INPUT tag with its TYPE argument set

to IMAGE. With IE, the button does not submit a value, but rather the coordinates of

the mouse-click on the image.

The following example results in a New button being displayed below the list of

entries. This button also invokes the Modify page, but this time allows the user to add

a new entry of the same class as the entries listed on the Search Results page.

<VFRelatedEntryForm>

 <VFSearchResults>

 New Staff Entry <VFRelatedEntryInput type="image"

 src="../icons/b_new_entry.gif">

</VFRelatedEntryForm>

<VFQueryURI [template=*CHAR] [filterfor=*CHAR]

[scope=user|base|*CHAR] [escval=on|off] [id=*CHAR]

[pageSize=*DIGIT] [reverse] [raw]>

This tag is replaced by a URL that allows the user to resubmit the search request. The

URL reproduces the search request that generated the results currently displayed on

the Search Results page.

The tag’s arguments are described below.

template Identifies the name of a Search Result template in the extra

template file (see page 11).

filterfor Restricts the resubmitted search to a specified space-separated

list of object classes. This argument overrides the Search Object

Classes field in the Search Form. (See the ViewDS Management

Agent help topic View or modify a Search Form.)

Technical Reference Guide: User Interfaces Version 7.5.1

44 Chapter 4: Access Presence templates

scope The scope argument changes the scope of the resubmitted

search. The scope argument is described on page 31. Unless

restricted searches are required, this argument should be set

to ‘base’.

escval When this argument is on, the value generated by the tag is

‘escaped’ to make it safe for use as a URI.

id This argument is described on page 31.

pageSize Sets the number of entries displayed on the Search Results page

after the user has resubmitted a search request.

When this argument is used, the Tags for navigating multiple

Search Results (page 44) can be implemented to allow navigation

between pages of results.

reverse Indicates that the contents of the Search Results page should be

displayed in reverse order when the user clicks the link generated

by this tag.

raw Indicates that a resubmitted search request should use the

original search criteria, ignoring any modifications made by the
remaining VFQueryURI arguments.

Tags for navigating multiple Search Results

The following tags are replaced by HTML hypertext links that allow users to navigate

multiple Search Results pages:

• VFQueryFirstHref – replaced by a link to the first page in a set of search

results

• VFQueryLastHref – replaced by a link to the last page

• VFQueryNextHref – replaced by a link to the next page

• VFQueryPreviousHref – replaced by a link to the previous page

The tags have the same arguments as the VFQueryURI tag (see page 43), except for

the html argument which is described on page 31.

The number of entries on each page is defined by the pageSize argument. If

pageSize is undefined, then an input field from the Search Form can be used to set

the number entries on each page. If the pageSize cannot be determined, then the

above tags produce no output.

URIs produced

The URIs produced by the above tags encode page information in a query string using

four attributes:

• before_count – identifies the number of entries to display before the target entry

• after_count – identifies the number of entries to display after the target entry

• content_count – identifies the number of entries in the set of results

• target_offset – identifies the offset of the target entry to display in the

result set. This attribute should normally have a value in the range of 1 to

content_count.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 45

The content_count and target_offset attributes are used as a guide. If the

actual result set is a different size to the number indicated by content_count then

the target_offset value is scaled to reference an entry in the same relative

position in the result set. Where the result set size is not known, the first page of

results may be referenced by setting target_offset to 0 and content_count to 1

and the last page of results may be referenced by setting the target_offset to

equal content_count.

The content_count should always be set to greater than or equal to 1.

Expanded Entry template

The Expanded Entry template generates the page that presents the details of an

individual entry. The Expanded Entry includes the full DN of the entry, all associated

attributes (unless non-printable or hidden), and a list of the subordinate entries in the

Directory Information Tree.

NOTE: The configuration-file parameter webTemplAttribute (see page 26) allows

alternative Expanded Entry templates to be invoked for specific directory entries. The

extra template file (see page 11) allows alternative Expanded Entry templates to be

invoked for all users.

The rest of this subsection describes the tags that can be included in the Expanded

Entry template:

• Core template tags

• Target object tags

• Alternative hierarchy tags

• Approval process tags

Core template tags

<VFExpandDN [useScript=1*CHAR] [reverse=on|off]

[superioronly=on|off] [fromdepth=1*DIGIT]

[format=1*CHAR] [id=*CHAR]>

This tag is replaced by the full DN of the entry.

By default, the DN is displayed in rows, each containing one RDN as an ‘attribute-

value’ pair. Each RDN has a HTML reference attached, which a user can click in order

to view the RDN’s entry.

For example, in plain text the name { C "AU"/ O "Deltawing" } would be

displayed as follows:

 Country AU

 Organization Deltawing

In HTML it is:

Country <a href="http://host:port/view500/webdua.cgi?ea0_lfz99_

120.&&c=AU">AU

Organization <a href="http://host:port/view500/webdua.cgi?ea0_l

fz99_120.&&o=Deltawing,c=AU">Deltawing

Technical Reference Guide: User Interfaces Version 7.5.1

46 Chapter 4: Access Presence templates

useScript

This argument invokes a call to a script function that displays a DN. The script function

is identified by the argument’s value, and it is invoked for each component

of the DN.

The argument should be within a <script> tag with the language set to

text/javascript (or a scripting type that supports a compatible syntax). Access

Presence generates parameter values that are escaped for Javascript string content.

The call has the following format:

func(level, objectClass, href, attName, attVal, leaf,

objDisplayName, attDisplayName)

Where:

• func – value of the useScript parameter

• level – level of AVA in DN (int 1..n)

• objectClass – the object class of the entry described by the complete DN (this is

a string and is the same for every AVA)

• href – HREF of the DN down to the current level

• attName – attribute name

• attVal – attribute value

• leaf – indicates whether the entry can have subordinates (True) or not (False)

• objDisplayName – the display name defined for the object class

• attDisplayName – the display name defined for the attribute type

reverse

This argument generates RDNs in reverse order. Default (off) is to start with the

entry under the root.

superioronly

When this argument is specified, the last RDN is not included in the generated

information.

The default is off.

fromdepth

This argument declares an integer depth to begin generating DN information. The

RDNs from the root down to depth minus one are ignored.

format

This argument identifies a set of format directives in the format file (see page 73) to be

used to generate the DN information.

id

This argument is common to many tags and is described on page 31.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 47

<VFExpandAtt [useScript=1*CHAR] [alwaysFormat=on|off]

[id=*CHAR] [format=1*CHAR] [dnformat=1*CHAR] >

This tag is replaced by all attributes (except ‘hidden’ ones) associated with the entry.

By default, the attributes are shown in rows, and long lines are wrapped where

necessary. Icons and attribute labels may be attached depending on the

configuration-file parameter webShow (see page 22).

If the user clicks a non-string attribute, a special ‘download’ message is displayed and

the user can save the attribute to disk. For example, the attributes

telephoneNumber and userCertificate would be displayed as follows:

Phone +61 3 9234 5678

User Certificate press here to download

useScript

This argument invokes a call to a script function for each attribute in the entry. The

argument’s value corresponds to the name of the script function.

The argument should be within a <script> tag with the language set to

text/javascript (or a scripting type that supports a compatible syntax). Access

Presence generates parameter values that are escaped for Javascript string content.

Access Presence generates a call with the following format:

func(objectClass, attName, attVal, objDisplayName,

attDisplayName)

Where:

• func – value of the useScript argument

• objectClass – the object class of the entry

• attName – attribute name

• attVal – attribute value

• objDisplayName – the display name defined for the object class

• attDisplayName – the display name defined for the attribute type

alwaysFormat

When this argument is on, formatting information is generated for all attributes even if

the attribute does not have a value in the current entry. When the argument is off

(the default), formatting information is only generated when a value exists.

id

This argument is common to many tags and is described on page 31.

format

This argument identifies a set of directives in the format file (see page 73) used to

display an attribute.

dnformat

This argument identifies a set of directives in the format file (see page 73) used to

display a DN.

Technical Reference Guide: User Interfaces Version 7.5.1

48 Chapter 4: Access Presence templates

<VFExpandSubclass [useScript=1*CHAR] [alwaysFormat =
yes|no] [format=1*CHAR] [show=none|nonleaf|all]

[id=*CHAR] [scope= {user | base | *CHAR}]>

This tag is replaced by the entries one level below the current entry in the DIT. These

subordinate entries are displayed row-by-row and grouped by their object class.

The default appearance of the subordinate entries is controlled through either:

• ViewDS Management Agent – in the Subordinate area of the object class’s

Properties window (see the help topic View or modify an object class’s DUA

presentation).

• Stream DUA – in the sub-classes component of the operational attribute

objectClassPresentation (see page 96).

The above settings can be overridden by the configuration-file parameter webshow

(see page 22) and by the search options on the Search Form (see VFSearchOptions

on page 38).

useScript

This argument invokes a call to a script function that displays a subordinate entry. The

script function is identified by the argument’s value, and it is invoked for each

subordinate entry.

The argument should be within a <script> tag with the language set to

text/javascript (or a scripting type that supports a compatible syntax). Access

Presence generates parameter values that are escaped for Javascript string content.

Access Presence generates calls that have the following format:

func(index, objectClass, href, attName, attVal, leaf,

objDisplayName, attDisplayName)

If webshow (see page 22) is set to sub, or the equivalent setting is selected on the

Search Form, then:

• func – value of the useScript argument

• objectClass – the object class of the subordinate entry

• href – HREF of the subordinate entry

• attName – attribute name of RDN

• attVal – attribute value of RDN

• leaf – indicates whether the entry is a branch (False) or leaf (True)

• objDisplayName – the display name defined for the object class

• attDisplayName – the display name defined for the attribute type

For any other setting of webshow, the above apply, except for attName and attVal:

• attName – attribute name

• attVal – attribute value

alwaysFormat

When this argument is on, formatting information is generated for all subclasses,

even when there are no subordinates for the subclasses in the current entry. When

the argument is off (the default), formatting information is only generated when

values exist.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 49

format

This argument identifies of a set of format directives in the format file (see page 73)

used to display subclass information.

show

This argument overrides the current behaviour defining which subordinate entries are

displayed. This behaviour is defined by the configuration-file parameter webshow (see

page 22) and may be modified through the search options on the Search Form.

The argument overrides the current behaviour as follows:

• none – do not show any subordinate entries

• nonleaf – show only non-leaf subordinate entries

• all – show all subordinate entries

id

This argument is common to many tags and is described on page 31.

scope

The scope argument is described on page 31.

<VFBanner>

This tag is replaced by the following strings which are concatenated and displayed

above the entry’s details:

• the label declared for the entry’s object class (for example, ‘Name’)

• the entry’s commonName attribute or, if declared, the object class’s preferred name

• if declared, the display name and value of the special attribute for the entry’s

object class

The special attribute allows alternative information to be displayed and might be, for

example, the entry’s telephone number or photograph.

To illustrate, if:

• label equals ‘Name:’

• preferred name is not set

• special attribute is set to emailAddress (display name is ‘Email’)

Then the following would be displayed for an example entry:

Name: “Bill Bailey” Email bill.bailey@cheeseworld.com.au

And if:

• label equals ‘Staff Number:’

• preferred name is set to employeeNumber

• special attribute is not set

Then the following would be displayed for the same example entry:

Staff Number: “109378777”

NOTE: This tag can also be used in three other templates – Welcome, Search Form, Search

Results. In each, the tag is replaced by a different message.

Technical Reference Guide: User Interfaces Version 7.5.1

50 Chapter 4: Access Presence templates

Declaring the label

The label can be declared through either:

• ViewDS Management Agent

Set in the ‘Label’ box in the DUA Presentation tab of the object class properties

window. See the help topic View or modify an object class's DUA presentation.

• Stream DUA

Set in the exp-name-label component of the operational attribute

objectClassPresentation (see page 96).

Declaring a preferred name

The preferred name can be declared through either:

• ViewDS Management Agent

Set in the ‘Preferred name’ box in the DUA Presentation tab of the object class

properties window. See the help topic View or modify an object class's DUA

presentation.

• Stream DUA

Set in the preferredName component of the operational attribute

objectClassPresentation (see page 96).

Declaring the special attribute

The label can be declared through either:

• ViewDS Management Agent

Set in the ‘Name’ box in the DUA Presentation tab of the object class properties

window. See the help topic View or modify an object class's DUA presentation.

• Stream DUA

Set in the special-att component of the operational attribute

objectClassPresentation (see page 96).

<VFAssPassFormHref [html=1*CHAR] [id=*CHAR]>

This element is replaced by a hypertext link to the Assign Password page. Access to

the Assign Password page is not part of the default Access Presence configuration.

To allow access, add this tag to the Expanded Entry template.

The html and id arguments are common to many tags and are described on

page 31.

<VFLabel>

The tag is a simple label and an alternative to the information displayed by the

VFBanner tag (see page 49).

It is replaced by the value of the mandatory naming attribute (defined by schema) for

the current entry. Alternatively, if defined, a ‘preferred name’ is displayed (see page

preferredName on page 102).

Target object tags

These tags are replaced by hypertext links to the target-object cache templates

described on page 66. For a description of the target-object cache, see page 7.

The configuration-file parameter webTargetObject (see page 23) controls whether

these links are displayed to all users.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 51

<VFSetTargetObjHref [confirm] [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link that empties the target-entry cache and then

adds the current entry to it.

The confirm, html and id arguments are described on page 31.

<VFShowTargetObjHref [html=1*CHAR] [id=*CHAR]

[expandSingle= on|off] >

This tag generates a link that displays the content of the target-object cache. Its

behaviour changes according to the number of entries in the target-object cache:

Target objects Tag is replaced by…

None Hypertext link to the base object

One Hypertext link to the entry set as the target object

Multiple Hypertext link to the Show Target Objects page (see page 67)

However, if the expandSingle argument is present and set to off, then the tag

generates a link to the Show Target Objects page (see page 67). If the argument is

absent or set to on, and there is a single entry in the target-object cache, then the tag

generates a link to the Expanded Entry page.

The html and id arguments are described on page 31.

<VFMoveHref [confirm] [html=1*CHAR] [id=*CHAR]>

This tag generates a link that moves the current entry to below a new superior within

the directory hierarchy. Its behaviour differs according to the number of entries in the

target-object cache:

Target objects Replaced by a link that…

One Moves the current entry so that it becomes an immediate
subordinate of the target object. The confirm argument

invokes a confirmation dialog before the entry is moved.

Multiple Opens the Select Target Object page (see page 67), which

allows the user to select a new superior for the current entry.

The html and id arguments are described on page 31.

<VFImportHref [confirm] [html=1*CHAR] [id=*CHAR]>

This tag generates a link that imports entries from within the directory hierarchy so

that they become subordinate to the current entry. Its behaviour differs according to

how many entries are in the target-object cache:

Target objects Replaced by a link that…

One Moves the target object to be an immediate subordinate of the
current entry. The confirm argument invokes a confirmation

dialog before the entry is moved.

Multiple Opens the Select Entries to Import page (see page 69), which

allows the user to select the entries to become subordinates of

the current entry.

The html and id arguments are described on page 31.

Technical Reference Guide: User Interfaces Version 7.5.1

52 Chapter 4: Access Presence templates

Access Presence only generates a link for this tag if one of the following applies:

• the user has super-user privileges

• moveMultipleSubs is enabled through either the ViewDS Management Agent

(see help topic View or modify default entitlements for DUA users) or through the

Stream DUA in either defaultEntitlement (see page 108) or

userEntitlement (see page 117).

The html and id arguments are described on page 31

<VFRemovalsHref [html=1*CHAR] [id=*CHAR]>

This tag generates a link to the Select Entries to Remove template (see page 69) to

select and delete multiple entries in the target object cache in a single operation.

The html and id arguments are described on page 31

Alternative hierarchy tags

These tags relate to the alternative hierarchies (see page 8).

<VFExpandAltSubord type=AttributeName

[useScript=1*CHAR] [alwaysFormat=yes|no]

[format=1*CHAR] [scope= {user | base | *CHAR}]

[show=none|nonleaf|all] [id=*CHAR] >

This tag displays an alternative hierarchy of entries below the current entry. It provides

an alternative to the standard DIT hierarchy provided by the VFExpandSubclass tag.

The alternative hierarchy is based on the attribute identified by the type argument.

For example, if type were set to manager, all entries whose manager attribute is set

to the DN of the current entry would be displayed. This would be irrespective of where

they appear in the DIT.

Except for type, this tag’s arguments are identical to those described under

VFExpandSubclass on page 48. The type argument identifies a DN-type attribute.

<VFAltAddHref type=AttributeName [confirm]

[html=1*CHAR] [id=*CHAR]>

This tag generates a link to the Select Entries to Add to Alternative Hierarchy template

(see page 70).

Access Presence does not always replace the VFAltAddHref tag with a link. It will

only display a link if:

• the schema and access controls allow the user to add the entries in the target-

object cache to the alternative hierarchy

• the entries in the target-object cache are not currently in the alternative hierarchy

The confirm, html and id arguments are described on page 31.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 53

<VFAltMoveHref type=AttributeName [confirm]

[html=1*CHAR] [id=*CHAR]>

This tag generates a link to the Select Entries to Move in Alternative Hierarchy

template (see page 71).

Access Presence will only display the link if:

• the schema and access controls allow the user to move the entries in the target-

object cache to the alternative hierarchy

• the entries in the target-object cache are already in the alternative hierarchy

The confirm, html and id arguments are described on page 31.

<VFAltRemoveHref type=AttributeName [confirm]

[html=1*CHAR] [id=*CHAR]>

This tag generates a link that removes the current entry from the alternative hierarchy

identified by the VFExpandAltSubord tag’s type parameter (see page 52).

Access Presence will only display the link if:

• the user has appropriate permissions to remove the entry

• the current entry is in the alternative hierarchy

The confirm, html and id arguments are described on page 31.

<VFAltExpandHref type=AttributeName [html=1*CHAR]

[id=*CHAR]>

This tag generates a link to display the current entry’s subordinates within an

alternative hierarchy. Access Presence will only display the link if the current entry has

subordinates within the alternative hierarchy identified by the VFExpandAltSubord

tag’s type parameter (see page 52).

The html and id arguments are described on page 31.

Approval process tags

These tags should be added to the Extended Entry template in order to implement the

approval process (see page 154). The links and information they generate is only

displayed to users with appropriate access rights.

<VFRequestDeleteHref [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link to the Request Remove Entry template (see

page 63). The html and id arguments are described on page 31.

<VFRequestAddSubHref [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link to the Add page, which allows the user to

submit a request to add a subordinate to the current entry. The html and id

arguments are described on page 31.

<VFRequestModifyHref [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link to the Modify page, which allows the user to

submit a request to modify the current entry. The html and id arguments are

described on page 31.

Technical Reference Guide: User Interfaces Version 7.5.1

54 Chapter 4: Access Presence templates

<VFRequestMoveHref [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a link that submits a request to move the current entry. The

html and id arguments are described on page 31.

<VFRequestImportHref [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a link that submits a request to import entries from within the

directory hierarchy so that they become subordinate to the current entry. The html

and id arguments are described on page 31.

<VFRequestRemovalsHref [html=1*CHAR] [id=*CHAR]>

This tag generates a link to the Select Entries to Remove template (see page 69) to

select and request the deletion multiple entries in the target object cache in a single

operation.

It is suitable for users that do not have permission to remove any entries in the target

object cache but do have permission to submit a request to remove at least one of

these entries.

The html and id arguments are described on page 31

<VFRequestList [id=*CHAR] [caption=*CHAR]>

This tag is replaced by an HTML table of update requests that relate to the current

user and are awaiting approval.

The table contains the following information:

• Requestor – a hypertext link to the Expanded Entry page for the user who

requested the update.

• Status – the status of the update request.

• Type – the type of update (such as modify, delete or move an entry).

• Time – the timestamp when the request was submitted.

• Reason – the reason for the update entered by the requestor.

• Action – a hypertext link to the page allowing the approver to view and either reject

or approve the request.

The caption argument can be used to declare the text in an HTML caption in the

table generated by this tag. If the argument is undeclared, or is an empty string, then

no HTML caption is generated in the table.

The id argument is described on page 31.

<VFRequestHistory [id=*CHAR] [caption=*CHAR]>

This tag is replaced by an HTML table containing the list of activities that have

occurred on the current update request. It only generates output when the user is

reviewing an update request.

The caption argument can be used to declare the text in an HTML caption in the

table generated by this tag. If the argument is undeclared, or is an empty string, then

no HTML caption is generated in the table.

The id argument is described on page 31.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 55

Error template

The Error template generates a page that displays ViewDS error messages. The

following tags are available in the Error template.

<VFErrorStr [format=1*CHAR]>

This tag is replaced with the unformatted error string if an error has occurred. For the

possible error strings, with error numbers, see VFHasError below.

The format argument is used to identify format file specification (see page 73) that

displays the error string in a format appropriate to its context. (The specification

should use the key words StartEntry and EndEntry.)

<VFHasError>

This tag is replaced by a ‘0’ if there is no error present, or by an error number. Each

error number has a corresponding error string, which replaces VFErrorStr>

described above.

The error numbers and corresponding error strings are as follows. Several error

strings include ‘%s’, which is replaced by appropriate text.

Error number Error string

12127 Sorry, at least %s characters are required for the input.

16001 Sorry, no word match for %s. Please re-enter.

16014 Cannot connect to the Directory. The Directory or the network

may be down. Please try again later.

16016 The search has identified too many entries. Please be more specific.

16017 The request has timed out. Please retry later.

16019 Server busy. Please retry later.

16020 Sorry, the directory does not have sufficient resources to process

this request.

16021 The entry has been moved or deleted by another user.

16022 No matching entry could be found.

16024 Corrupted entry detected. Please report this to your administrator.

16025 Your Search/Read has been rejected by the server.

16026 You do not have sufficient access permission to do this operation.

16027 The entry has been modified by another user.

16028 The Directory does not accept duplicate values.

16029 The entry already exists.

16030 The operation is not allowed on non-leaf node.

16037 Sorry, please give a name to the new entry.

16048 A system level error has been detected. Please report this to your

administrator.

16049 Unexpected Error. Please report the following number to your

administrator:

Technical Reference Guide: User Interfaces Version 7.5.1

56 Chapter 4: Access Presence templates

Error number Error string

16126 Sorry, an invalid/non-printable character has been detected in

field %s. Please remove the character and retry.

16128 Sorry, field %s is too long.

16129 Sorry, only single value is allowed for %s.

16130 Sorry, a non-unique value is detected in field %s. Please remove

any non-unique value in the field.

16131 Sorry, the phone number %s entered is invalid. Please re-enter.

16132 Sorry, please fill in the mandatory field %s .

16133 Sorry, the time you entered in field %s is invalid. Please re-enter

the time.

16134 Sorry, your input for field %s is of an invalid format. Please re-

enter the field.

16135 Sorry, the OR Address you entered is invalid. Please re-enter.

16151 Your Username and/or Password is incorrect. Please check them

before trying to login again.

Modify template

The Modify template generates a page that allows a user to modify an entry. It also

allows a user to enter the details for a new entry, and ensures that the values

available for selection conform to schema and access controls.

The following tags are only outputted if the user has the required privileges.

<VFModifyHref [confirm] [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link to the Modify page, which allows the user to

modify the current entry.

The confirm, html and id arguments are described on page 31.

<VFModifyForm [id=*CHAR] name=1*CHAR [summary=1*CHAR]>

This tag block is replaced by an HTML FORM element and should contain the

VFModifyAtt tag.

For example:

<VFModifyForm id="modform" name="modform" summary="Modify">

 <table>

 <caption><h4>Modify details for<VFLabel></h4></caption>

 <VFModifyAtt width="36"><VFErrorStr>

 </table>

 </VFModifyForm>

The id argument is described on page 31.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 57

<VFModifyAtt [width=1*DIGIT] [id=*CHAR] [format=*CHAR]
[description={row | heading | data}] [save = {top | bottom

| both} [checkbox[=1*CHAR]]>

This tag is replaced by modifiable input controls containing an entry’s attribute values.

It should be included in the code block <VFModifyForm> </VFModifyForm>.

An attribute with a Distinguished Name syntax is displayed in a list box unless the

optional checkbox argument is included (see below):

• a single-valued attribute is displayed in a single-select list box

• a multi-valued attribute is displayed in a multiple-select list box

In both cases, the user can select an empty option. The content of the list box is

sorted alphabetically according to the values generated by the VFLabel tag (see

page 50).

The entries in the target-object cache (see page 7) are presented in a single-select

list box.

The format and id arguments are described on page 31. The width argument

specifies the width of the input boxes for attribute values (the default is 50).

save

This argument controls whether the Save button is displayed above, below, or both

above and below the form’s data. The default is top.

description

This argument controls which part of a row responds to the user’s mouse hovering

over it. The response is to display the description defined in the attribute’s DUA

presentation – see the ViewDS Management Agent help topic View or modify an

attribute’s DUA presentation.

The description argument can have one of the following values:

• row – the entire row (the default) responds to the mouse

• heading – the heading cell of the row responds to the mouse

• data – the input field responds to the mouse

checkbox

This argument indicates that a multi-valued attribute is displayed using checkbox input

fields, rather than a multiple-select list box. This occurs only for multi-valued attributes

whose permitted values are well-defined, either through a constrained syntax,

enumerated type or the use of pre-processing functions. It also occurs for the auxiliary

object class list.

The checkbox input fields are generated for each possible value of the

attribute. These are all contained within a FIELDSET HTML element. The

checkbox has an optional value. If this value is provided, it will be used as a value for

the class attribute of the FIELDSET HTML elements generated on the Modify form.

Technical Reference Guide: User Interfaces Version 7.5.1

58 Chapter 4: Access Presence templates

<VFDeleteHref [confirm] [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link that deletes the current entry. The confirm

argument invokes a confirmation dialog when the link is clicked by a user.

The html and id arguments are common to many tags and are described on

page 31.

Modify Value Form template

The Modify Value Form template generates a page that allows a user to add, modify

and delete individual values of a multi-value attribute. It also ensures that the values

available for selection conform to schema and access controls.

The following tags are only outputted if the user has the required privileges.

<VFModifyForm [id=*CHAR] name=1*CHAR [summary=1*CHAR]>

This tag block is replaced by an HTML FORM element and should contain the

VFModifyVal tag.

For example:

<VFModifyForm id="modform" name="modform" summary="Modify">

 <table>

 <caption><h4>Modify details for<VFLabel></h4></caption>

 <VFModifyVal width="36"><VFErrorStr>

 </table>

 </VFModifyForm>

The id argument is described on page 31.

<VFModifyVal [width=1*DIGIT] [id=*CHAR] [format=*CHAR]

[description={row | heading | data}] [save = {top | bottom

| both} [checkbox[=1*CHAR]]>

This tag is replaced by modifiable input controls containing values. It should be

included in the code block <VFModifyForm> </VFModifyForm>.

An attribute with a Distinguished Name syntax is displayed in a multiple-select list box

unless the optional checkbox argument is included (see below):

The user can select an empty option. The content of the list box is sorted

alphabetically according to the values generated by the VFLabel tag (see page 50).

The entries in the target-object cache (see page 7) are presented in a single-select

list box.

The format and id arguments are described on page 31. The width argument

specifies the width of the input boxes for attribute values (the default is 50).

save

This argument controls whether the Save button is displayed above, below, or both

above and below the form’s data. The default is top.

description

This argument controls which part of a row responds to the user’s mouse hovering

over it. The response is to display the description defined in the attribute’s DUA

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 59

presentation – see the ViewDS Management Agent help topic View or modify an

attribute’s DUA presentation.

The description argument can have one of the following values:

• row – the entire row (the default) responds to the mouse

• heading – the heading cell of the row responds to the mouse

• data – the input field responds to the mouse

checkbox

This argument indicates that a multi-valued attribute is displayed using checkbox input

fields, rather than a multiple-select list box. This occurs only for multi-valued attributes

whose permitted values are well-defined, either through a constrained syntax,

enumerated type or the use of pre-processing functions. It also occurs for the auxiliary

object class list.

The checkbox input fields are generated for each possible value of the attribute.

These are all contained within a FIELDSET HTML element. The checkbox has an

optional value. If this value is provided, it will be used as a value for the class attribute

of the FIELDSET HTML elements generated on the Modify Value form.

<VFAddValueInput [html=1*CHAR]>

This tag must be used within the scope of the HTML form created using the

VFModifyForm tag.

It will generate a submit button on the Modify Value form suitable for adding a new

value if the current user has permission to add a value for the attribute.

This tag produces an HTML input control with both type and name attributes. If an

optional "html" parameter is present, the remainder of the control, including the closing

'>' for the element, are provided by this parameter. Otherwise, the value and title

attributes are provided with default values.

<VFModifyValueInput [html=1*CHAR]>

This tag must be used within the scope of the HTML form created using the

VFModifyForm tag.

It will generate a submit button on the Modify Value form to modify the current value if

the current user has permission to modify the value of the attribute.

This tag produces an HTML input control with both type and name attributes. If an

optional "html" parameter is present, the remainder of the control, including the closing

'>' for the element, are provided by this parameter. Otherwise, the value and title

attributes are provided with default values.

<VFDeleteValueInput [html=1*CHAR]>

This tag must be used within the scope of the HTML form created using the

VFModifyForm tag.

It will generate a submit button on the Modify Value form to delete the current value if

the current user has permission to delete the value of the attribute.

This tag produces an HTML input control with both type and name attributes. If an

optional "html" parameter is present, the remainder of the control, including the closing

Technical Reference Guide: User Interfaces Version 7.5.1

60 Chapter 4: Access Presence templates

'>' for the element, are provided by this parameter. Otherwise, the value and title

attributes are provided with default values.

<VFPreprocessInput [html=1*CHAR]>

This tag must be used within the scope of the HTML form created using the

VFModifyForm tag.

It will generate a checkbox input control that can be used to enable/disable optional

preprocessing for a value of an attribute. The input control will only be generated

when preprocessing is applicable for the value. Preprocessing cannot be applied to

attributes with complex syntax, such as annotated types.

This tag produces an HTML input control with both type and name attributes. If an

optional "html" parameter is present, the remainder of the control, including the closing

'>' for the element, are provided by this parameter. Otherwise, the id, value and title

attributes are provided with default values.

Add template

The Add template generates a page that allows the user to select the object class for

a new entry.

<VFAddSubHref [confirm] [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link to the Add page. The confirm, html and id

arguments are common to many tags and are described on page 31.

<VFAddOCSel>

This tag is replaced by a list box containing all the available entry types (object

classes) that the user can create under the current entry. It should be used within a

FORM block which has an ACTION parameter value generated by VFAddOCURI (see

below).

<VFAddOCURI [id=*CHAR]>

This tag is replaced by a URI pointing to the Modify page from the Add page. It should

be used to generate the ACTION parameter value for a FORM containing the

VFAddOCSel tag.

The id argument is common to many tags and is described on page 31.

Print Form template

The Print Form template generates a page that allows the user to request a report.

The list of available reports is configured through the printconfig file (see

Configuring for printing on page 27).

A requested report is generated by the Printing DUA (see page 127), and the results

are displayed according to the MIME mapping file (see page 13). If no MIME type is

set for the report in the printconfig file then the report will be displayed by the Print

template (see page 62).

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 61

<VFPrintFormHref [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link to the Print Form page. The html and id

arguments are common to many tags and are described on page 31.

<VFPrintSelection [width=1*DIGIT] [useScript=1*CHAR]

[scope= {user | base | *CHAR}]>

This tag is replaced by the dialog that allows a user to select a report to be printed.

The width argument specifies the width of the input fields in the selection dialog.

The input arguments are:

• The print report type, a list box of the print scripts available to the user, as defined

in the file printconfig (see Configuring for printing on page 27).

• The base entry from which to generate the report. The presents a drop-down list

containing the entries in the target-object cache (see Target-object on page 66). If

the user does not select an entry, the report’s base entry will be the one defined in

the print script.

• Optionally, the output file name. If this is not provided, the report will only be

displayed to the screen.

This tag can be used in any other template to display the list of reports with hypertext

links to each. When used in a template other than the Print Form, however, it can only

be invoked using the useScript argument. If used in the Welcome template, the

scope argument must be set to base.

useScript

This argument generates a call to a script function identified by the argument’s value.

The argument should be within a <script> tag with the language set to

text/javascript (or a scripting type that supports a compatible syntax). Access

Presence generates parameter values that are escaped for Javascript string content.

The call has the following format:

func(id, label, base, entry, url)

Where:

• func – the value of the useScript argument

• id – an integer that identifies a print script by its position in the file printconfig

• label – a string that identifies a print script by its name in the file printconfig

• base – the LDAP string encoding for the DN of the base entry from which the report

will be generated

• url – the URL required to access the report

scope

This argument allows you to change the scope of a report. By default the scope of a

report is the current entry and its subordinates. The scope argument is described on

page 31.

Technical Reference Guide: User Interfaces Version 7.5.1

62 Chapter 4: Access Presence templates

Print template

The Print template generates a page to present the report requested through the Print

Form page.

<VFPrintReport >

This tag is replaced by the generated report.

New Password template

The New Password template allows a user to change their password – the user enters

their current password and then a new password twice.

<VFChangePassFormHref [html=1*CHAR] [id=*CHAR]>

This tag is replaced by a hypertext link to the New Password page. The html and id

arguments are common to many tags and are described on page 31.

<VFChangePassURI [id=*CHAR]>

This tag is used to construct a URI to submit the New Password page. It should be

used to generate the ACTION parameter value for a FORM containing the

VFAuthOUserPassID, VFAuthUserPassID and VFAuthUserPassID2 tags.

<FORM METHOD="post" ACTION="<VFChangePassURI>">

The id argument is common to many tags and is described on page 31.

<VFAuthOUserPassID>

This tag is the value of the name field in the HTML input tag for the user’s current

password:

<input name="<VFAuthOUserPassID>" type="password" size="10">

The type field should be set to password so that the user’s password is not

displayed on the screen.

<VFAuthUserPassID>

This tag is the value of the name field in the HTML input tag for the user’s new

password:

<input name="<VFAuthUserPassID>" type="password" size="10">

The type field should be set to password so that the user’s password is not

displayed on the screen.

<VFAuthUserPassID2>

This tag is the value of the name field in the HTML input tag for the user’s confirmed

password:

<input name="<VFAuthUserPassID2>" type="password" size="10">

The type field should be set to password so that the user’s password is not

displayed on the screen.

<VFAuthReferer>

This tag ensures that Access Presence returns to the page the user was attempting to

view before resetting their password.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 63

The tag is replaced by an HTML input element:

<input type=‘hidden’ name=‘referrer’ value=URL>

The value is equal to the URL for the page the user was attempting to view.

Assign Password template

The Assign Password template allows a user to assign or change the user name and

password of another user. It is subject to the access controls that apply to the user

attempting to access the page.

NOTE: To provide access to the Assign Password page, a link to the page must be added to

the Expanded Entry template (see <VFAssPassFormHref> on page 50).

The VFAuthUserPassID and VFAuthUserPassID2 fields are described under the

New Password template on page 62.

<VFAssPassTable>

This tag is replaced by an HTML table containing all the input fields required for the

Assign Password page. The fields include the current user name and password.

The tag must be within an HTML form element that has an action provided by the

VFAssPassURI template template tag. Any text included between the

VFAssPassTable tag’s name and closing '>' is included as an attribute of the

generated HTML table element's start tag.

<form method=”post” action=”<VFAssPassURI>”>

 <VFAssPassTable>

 <input type=”submit” name=”submit” value=”Change Password”>

</form>

<VFAssPassURI [id=*CHAR]>

This tag is replaced by a URI to submit the Assign Password form. It is used to

generate the value for the ACTION element in a FORM containing the

VFAssPassTable, VFAuthUserNameID, VFAuthUserPassID and

VFAuthUserPassID2 tags.

<form method="post" action="<VFAssPassURI>">

The id argument is common to many tags and is described on page 31.

<VFAuthUserNameID>

This tag is the value of the name field in the HTML input tag for the user name of the

user whose user name or password are to be changed:

<input name="<VFAuthUserNameID>" value="<VFAttVal id=userName>"

type="text">

The type field should be set to text.

Request Remove Entry template

This template is part of the approval process (see page 154).

The Request Remove Entry page is invoked by the link generated by the

VFRequestDeleteHref tag (see page 53). For a ‘requestor’, the page allows the

Technical Reference Guide: User Interfaces Version 7.5.1

64 Chapter 4: Access Presence templates

user to enter the reason why they want to delete the current user; and for an

‘approver’, the page allows the user to view the reason and either reject or approve

the deletion.

The Request Remove Entry template should include the following tags enclosed

within an HTML FORM element:

• VFRequestReason (see page 85)

• VFRequestSaveInput (see page 85)

• VFRequestCancelInput (see page 85)

• VFRequestApproveInput (see page 85)

• VFRequestRejectInput (see page 86)

The method attribute of the FORM should be set to post and its action attribute set

to the output of the VFRequestDeleteURI template file tag (see below).

<VFRequestDeleteURI [html=1*CHAR] [id=*CHAR]>

This tag generates the value of the action attribute in an HTML FORM in the Request

Remove Entry template. The html and id arguments are described on page 31.

Global changes templates

These templates allow an Access Presence user to modify attributes globally. To

illustrate, if a user changes an attribute’s value globally, then all instances of the

attribute (within the scope of the change) will be set to the new value.

Before a user can apply global changes, the ViewDS DSA must be configured to

enable this functionality (see Configuring for global changes on page 28).

There are three global changes templates:

• Global Change Request template

• Global Change Confirm template

• Global Change Results template

Each is described below.

Global Change Request template

The Global Change Request template presents a form that allows a user to specify a

global change.

<VFGCRequestHref html=*CHAR>

This tag provides a link to the Global Change Request page. For example:

<VFGCRequestHref html=">Global Changes">

The html argument is described under Common arguments on page 31.

<VFGCRequestURI [id=*CHAR] [html=1*CHAR]>

This tag must be included in the template, and is replaced by a URI to submit the

Global Change Request page and display the Global Change Confirm page. It

generates the value for the ACTION element in a FORM containing the VFGCRequest

tag. The FORM should have its METHOD set to POST, and should include a submit

button.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 65

For example:

<form method="post" action="<VFGCRequestURI>">

...

<VFGCRequest width="36">

<VFErrorStr format="error">

<input type="image" src="../icons/newface/save.jpg">

...

</form>

The id and html arguments are described under Common arguments on page 31.

<VFGCRequest [width=1*DIGIT]>

This tag is replaced by form elements that allow the user to specify a global change.

The user can select the scope of the change, the entry type and attribute to apply the

change to, the nature of the change (add, modify, replace value), the new value, etc.

The width argument specifies the length of the input boxes displayed.

Global Change Confirm

The Global Change Confirm template generates a page showing a summary of the

global changes defined in the Global Change Request.

<VFGCConfirmURI [id=*CHAR] [html=1*CHAR]>

This tag must be included in the template, and is replaced by a URI to submit the

Global Change Confirm page and display the Global Change Results page. It

generates the value for the ACTION element in a FORM containing the VFGCConfirm

tag. The FORM should have its METHOD set to POST, and should include a submit

button.

For example:

<form method="post" action="<VFGCConfirmURI>">

...

<VFGCConfirm width="32">

 <VFErrorStr format="error">

 <input type="image" src="../icons/newface/save.jpg">

...

</form>

The id and html arguments are described under Common arguments on page 31.

<VFGCConfirm [width=1*DIGIT]>

This tag is replaced by a list of the entries, and their attributes, that will be affected by

the global changes defined in the Global Change Request. It also displays check

boxes to allow the user to confirm each change before they are applied.

The width argument specifies the length of the input boxes displayed.

Global Change Results

The Global Change Results template generates a page that shows whether a global

change was successful for each entry it was applied to.

Technical Reference Guide: User Interfaces Version 7.5.1

66 Chapter 4: Access Presence templates

<VFGCResults [id=*CHAR]>

This tag must be included in the template, and is replaced by a list of entries and the

status of the global change for each.

The id argument is described under Common arguments on page 31.

Target-object cache templates

For an overview of the target-object cache, see page 7.

This subsection describes the tags and templates relating to the target-object cache.

The tags that are common to many templates are described below; and the tags that

can appear in templates and the format file are described on page 83.

Common target object tags

These tags only apply to the first entry in the target-object cache. They can appear in

any Access Presence template except the Authentication template.

<VFTargetObjStr>

This tag is replaced by a string representation of the DN of the current ‘target object’.

If no target object is set, nothing is generated.

<VFTargetObjDN [useScript=1*CHAR]>

This tag is replaced by the LDAP DN of the current target object, if there is one set.

This replacement string will be escaped for HTML, with quotes and angle brackets

replaced by their character entity reference representations (for example, & is

replaced by ").

useScript

This argument generates a call to a script function identified by the argument’s value.

The argument should be within a <script> tag with the language set to

text/javascript (or a scripting type that supports a compatible syntax). Access

Presence generates parameter values that are escaped for Javascript string content.

The call has the following format:

func(ldapDN, objectClass)

Where:

• ldapDN – a quoted string containing the LDAP DN of the current target object,

escaped appropriately for use as a script string

• objectClass – a string representing the object class of the current target object, if

available; otherwise an empty string

<VFTargetObjOC>

Deprecated.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 67

Show Target Objects template

This template allows a user to view the contents of, and delete entries from, the

target-object cache.

The Show Target Objects page is displayed when a user:

• clicks the link generated by VFShowTargetObjHref tag (see page 51)

• submits a form utilising the VFShowTargetObjectsURI tag described below

<VFShowTargetObjectsURI [id=*CHAR] >

This tag must be included in the template, and is replaced by a URI that submits the

Show Target Object page. It generates the value for the ACTION element of a FORM

that uses the POST method and contains the VFShowTargetObjects tag. For

example:

<form method="post" action="<VFShowTargetObjectsURI>">

 <table width="100%">

<tr>

<th><input type="checkbox" name="toggle-all" value="true"

onchange="toggle_all(this);"></th>

<th>Name</th>

<th>Unit</th>

<th>Telephone</th>

</tr>

<VFShowTargetObjects format="targets">

<VFErrorStr format="error">

 </table>

 <input type="image" src="../icons/newface/delete.jpg">

</form>

The id argument is described under Common arguments on page 31.

<VFShowTargetObjects [format=1*CHAR] [id=*CHAR] >

This tag is replaced by a list of entries in the target-object cache. They are sorted

alphabetically according to the values generated by the VFLabel tag (see page 50).

The VFShowTargetObjects tag must be within an HTML FORM whose ACTION

element is set to the VFShowTargetObjectsURI.

The VFShowTargetObjects tag must also include the format parameter to identify

a format-file specification which includes the VFSelectTargetObjInput tag (see

page 83). The VFSelectTargetObjInput tag is replaced by HTML INPUT controls

(checkboxes) that allow the user to select the entries to be removed from the target-

object cache. They are removed when the FORM is submitted.

To illustrate, consider the following VFShowTargetObjects tag:

<VFShowTargetObjects format="targets">

Its format parameter identifies the following format-file specification:

<format * * targets>

<tr>

<td><VFSelectTargetObjInput type="checkbox"></td>

<td><a href="<VFURI>"><VFLabel></td>

Technical Reference Guide: User Interfaces Version 7.5.1

68 Chapter 4: Access Presence templates

<td><VFAttVal id="hierarchyName"></td>

<td><VFAttVal id="telephoneNumber"></td>

</tr>

</format>

The id argument is described under Common arguments on page 31.

Select Target Object template

This template displays the entries in the target-object cache that are valid potential

superiors of the entry being moved within the directory hierarchy. It allows the user to

select the new superior.

The Select Target Object page is displayed when a user clicks the link generated by

VFMoveHref tag (see page 51). That is, if there is more than one entry in the target-

object cache that is a valid superior for the entry being moved.

<VFSelectTargetObjURI [id=*CHAR] >

This tag must be included in the template, and is replaced by a URI that submits the

Select Target Object page. It generates the value for the ACTION element of a FORM

that uses the POST method and contains the VFSelectTargetObj tag. For example:

<form method="post" action="<VFSelectTargetObjURI>">

 <table width="100%">

<tr>

<th>Name</th>

<th>Unit</th>

<th>Telephone</th>

</tr>

<VFSelectTargetObj format="select"> <VFErrorStr>

 </table>

 <input type="image" src="../icons/newface/move.jpg">

</form>

The id argument is described under Common arguments on page 31.

<VFSelectTargetObj [format=1*CHAR] [id=*CHAR] >

This tag is replaced by a list of entries in the target-object cache that are valid

superiors to the entry being moved. They are sorted alphabetically according to the

values generated by the VFLabel tag (see page 50).

The VFSelectTargetObj tag must be within an HTML FORM whose ACTION

element is set to the VFSelectTargetObjURI.

The VFSelectTargetObj tag must also include the format parameter to identify a

format-file specification which includes the VFSelectTargetObjInput tag (see

page 83). The VFSelectTargetObjInput tag is replaced by HTML INPUT controls

(radio buttons) that allow the user to select the entry to be the new superior to the

entry being moved. To illustrate, consider the following VFSelectTargetObj tag:

<VFSelectTargetObj format="select">

Its format parameter identifies the following format-file specification:

<format * * select>

<tr>

<td><VFSelectTargetObjInput type="radio"></td>

<td><a href="<VFURI>"><VFLabel></td>

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 69

<td><VFAttVal id="hierarchyName"></td>

<td><VFAttVal id="telephoneNumber"></td>

</tr>

</format>

The id argument is described under Common arguments on page 31.

Select Entries to Import template

This template displays the entries in the target-object cache that are valid

subordinates to the current entry. It allows the user to select new subordinates for the

current entry.

The Select Entries to Import page is displayed when a user clicks the link generated

by the VFImportHref tag (see page 51).

<VFSelectImportsURI [id=*CHAR] >

This tag must be included in the template, and is replaced by a URI that submits the

Select Entries to Import page. It generates the value for the ACTION element of a

FORM that uses the POST method and contains the VFSelectImports tag.

The id argument is described under Common arguments on page 31.

<VFSelectImports [format=1*CHAR] [id=*CHAR] >

This tag is replaced by a list of entries in the target-object cache that are valid

subordinates to the current entry. They are sorted alphabetically according to the

values generated by the VFLabel tag (see page 50).

The VFSelectImports tag must be within an HTML FORM whose ACTION element

is set to the VFSelectImportsURI.

The VFSelectImports tag must also include the format parameter to identify a

format-file specification which includes the VFSelectTargetObjInput tag (see

page 83). The VFSelectTargetObjInput tag is replaced by HTML INPUT controls

(checkboxes) that allow the user to select the new subordinate entries. The id

argument is described under Common arguments on page 31.

Select Entries to Remove template

This template displays the entries in the target-object cache that are valid candidates

to be removed. It allows the user to select and delete or select and request the

deletion of multiple entries in a single operation, depending on their permissions.

The Select Entries to Remove page is displayed when a user clicks the link generated

by the VFRemovalsHref tag (see page 52) or the VFRequestRemovalsHref tag

(see page 54).

<VFSelectRemovalsURI [id=*CHAR] >

This tag must be included in the template, and is replaced by a URI that submits the

Select Entries to Remove page. It generates the value for the ACTION element of a

FORM that uses the POST method and contains the VFSelectRemovals tag.

The id argument is described under Common arguments on page 31.

Technical Reference Guide: User Interfaces Version 7.5.1

70 Chapter 4: Access Presence templates

<VFSelectRemovals [format=1*CHAR] [id=*CHAR] >

This tag is replaced by a list of entries in the target-object cache that are valid

candidates for removal. They are sorted alphabetically according to the values

generated by the VFLabel tag (see page 50).

The VFSelectRemovals tag must be within an HTML FORM whose ACTION element

is set to the VFSelectRemovalsURI.

The VFSelectRemovals tag may also include the format parameter to identify a

format-file specification describing how each entry in this list should be displayed. This

format-file specification must include the VFSelectTargetObjInput tag (see

page 83). The VFSelectTargetObjInput tag is replaced by HTML INPUT control

that is used to identify which entries should be removed when the enclosing HTML

FORM is submitted.

The id argument is described under Common arguments on page 31.

Select Entries to Add to Alternative Hierarchy template

This template allows a user to add entries to an alternative hierarchy. The user selects

the entries from the target-object cache to become new subordinates (within the

alternative hierarchy) of the current entry.

The Select Entries to Add to Alternative Hierarchy page displays the entries in the

target-object cache that are:

• valid possible subordinates – within an alternative hierarchy – to the current entry

• are NOT currently in the alternative hierarchy

The current entry is the entry displayed by the Expanded Entry page from which this

page is invoked by the user – see the VFAltAddHref tag on page 52. The alternative

hierarchy is identified by the type parameter of the VFExpandAltSubord tag (p 52).

<VFAltAddSelectionURI [id=*CHAR] >

This tag must be included in the template, and is replaced by a URI that submits the

Select Entries to Add to Alternative Hierarchy page. It generates the value for the

ACTION element of a FORM that uses the POST method and contains the

VFAltAddSelection tag.

The id argument is described under Common arguments on page 31.

<VFAltAddSelection [format=1*CHAR] [id=*CHAR] >

This template displays the entries in the target-object cache that are:

• valid possible subordinates – within an alternative hierarchy – to the current entry

• are NOT currently in the alternative hierarchy

They are sorted alphabetically according to the values generated by the VFLabel tag

(see page 50).

The VFAltAddSelection tag must be within an HTML FORM whose ACTION

element is set to the VFAltAddSelectionURI. It must also include the format

parameter to identify a format-file specification which includes the

VFSelectTargetObjInput tag (page 83). The VFSelectTargetObjInput tag is

replaced by HTML INPUT controls (checkboxes) that allow the user to select the new

subordinate entries.

The id argument is described under Common arguments on page 31.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 4: Access Presence templates 71

Select Entries to Move in Alternative Hierarchy template

This template allows a user to move entries within an alternative hierarchy. The user

selects the entries from the target-object cache to become new subordinates (within

the alternative hierarchy) of the current entry.

The Select Entries to Move in Alternative Hierarchy page displays the entries in the

target-object cache that are:

• valid possible subordinates – within an alternative hierarchy – to the current entry

• are already in the alternative hierarchy

The current entry is the entry displayed by the Expanded Entry page from which this

page is invoked by the user – see the VFAltMoveHref tag on page 53. The

alternative hierarchy is identified by the type parameter of the VFExpandAltSubord

tag (see page 52).

<VFAltMoveSelectionURI [id=*CHAR] >

This tag must be included in the template, and is replaced by a URI that submits the

Select Entries to Move in Alternative Hierarchy page. It generates the value for the

ACTION element of a FORM that uses the POST method and contains the

VFAltMoveSelection tag.

The id argument is described under Common arguments on page 31.

<VFAltMoveSelection [format=1*CHAR] [id=*CHAR] >

This tag is replaced by a list of entries in the target-object cache that are:

• valid possible subordinates – within an alternative hierarchy – to the current entry

• are already in the alternative hierarchy

They are sorted alphabetically according to the values generated by the VFLabel tag

(see page 50).

The VFAltMoveSelection tag must be within an HTML FORM whose ACTION

element is set to the VFAltMoveSelectionURI.

The VFAltMoveSelection tag must also include the format parameter to identify

a format-file specification which includes the VFSelectTargetObjInput tag (see

page 83). The VFSelectTargetObjInput tag is replaced by HTML INPUT controls

(checkboxes) that allow the user to select the new subordinate entries.

The id argument is described under Common arguments on page 31.

 73

Chapter 5

 Format file

A format file contains Access Presence tags that define the presentation of individual

elements within pages. It allows a finer level of presentation detail to be defined than

is possible in a page template.

This chapter has the following sections:

• Location and syntax

• Assessment order and examples

• URI and link tags

• Display name tags

• Target object tags

• Alternative hierarchy tags

• Approval process tags

Location and syntax
The format file is identified by the configuration-file parameter webFormatFile (see

page 26). An example format file is supplied with the demonstration directory,

Deltawing (webdir\tmpl\extra.lst).

The file contains directives in the following form:

<format attName objClass formatID optional>

<html to replace the attribute with the attName or

objClass goes here along with the format file tags

described in this chapter>

</format>

The elements of a directive are described below.

attName

The name of an attribute type, or * to match any attribute type.

When the dnformat argument is declared, the attName should be the attribute

holding the entry’s DN. (The optional dnformat is an argument for the VFExpandAtt

and VFAttVal tags.)

objClass

The name of an object class, or * to match any object class.

Technical Reference Guide: User Interfaces Version 7.5.1

74 Chapter 5: Format file

formatID

This is an identifier that corresponds to the value of a tag’s format argument.

Many of the template tags have the optional format argument. When declared, the

format argument’s value will correspond to blocks of format-file entries identified by

formatID. The directives within these entries are then applied to the data generated

by the tag.

optional

A format directive can include one of the following optional keywords.

Optional keyword Displays the output defined in the format directive…

StartEntry Before each entry in the search results or in a subordinate

list, if it is present.

EndEntry After each entry in the search results or in a subordinate

list, if it is present.

StartFirstEntry Before the first entry in a search result or subordinate list, if

it is present. If not present, StartEntry will be used.

This keyword applies to the first entry on the page. So for a

paged search result, the first entry on each page will be

formatted using the StartFirstEntry context.

EndFirstEntry After the first entry in a search result or subordinate list, if it

is present. If not present, EndEntry will be used. This

keyword applies to the first entry on the page. So, for a

paged search result, the first entry on each page will be

formatted using the EndFirstEntry context.

FirstAtt To the first attribute in each entry.

StartLine Before the first value of each attribute type.

ClassName After the output defined in the StartEntry format

directive, and before each entry. This keyword is used to

generate the display name for subordinate entries

displayed by the Expanded Entry page.

StartAtt Before the first value of a multi-value DN type attribute.

EndAtt After the last value of a multi-value DN type attribute.

NoAtt This keyword allows content to be provided for attributes

with no value (for example to provide content for a table cell

when there is no value to put in it).

RelatedEntryRow Before each entry displayed by the Search Results page

when used in the related-entry workflow (see page 152).

RelatedEntryEnd After the last entry displayed by the Search Results page

when used in the related-entry workflow (see page 152).

RequestReason This keyword relates to the approval process (see

page 154) and is described below.

InputChecked This keyword relates to the approval process (see

page 154) and is described below.

FirstValue To the first value of a multi-valued attribute to be formatted

differently to subsequent values.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 5: Format file 75

RequestReason

This keyword identifies directives that define the presentation of the input elements on

the Modify page during the approval process.

The directives are invoked as described above – a formatID in the format file

corresponds to the format argument of the VFModifyAtt tag (see page 57) – but

they should also include this keyword.

A directive with the RequestReason keyword must include the VFRequestReason

tag, and can also include any of the remaining approval process tags described on

page 84.

An example follows.

Example

Request reason input box for modify form.

<format * * reason RequestReason>

<tr>

 <td> </td>

 <th align="right" style="background-color: red;">Reason for

 submitting update request:</th>

 <td style="background-color: red;"><VFRequestReason cols="40"

 rows="6"></td>

 <td style="background-color: red;">

 <VFRequestSaveInput html='type="submit" value="Submit"

 title="Submit request to modify entry.">'>

 <VFRequestApproveInput html='type="submit" value="Approve"

 title="Approve request to modify entry.">'>

 <VFRequestCancelInput html='type="submit" value="Revoke"

 title="Revoke request to modify entry.">'>

 <VFRequestRejectInput html='type="submit" value="Reject"

 title="Reject request to modify entry.">'>

 </td>

</tr>

</format>

InputChecked

This keyword identifies a set of directives used by the Select Target Object template

(see page 68) during the approval process for moving an entry.

The approval process involves the following stages:

1. The user clicks the link to move the current entry in the directory structure. The

Select Target Object template is displayed because there are multiple valid new

superiors in the target-object cache.

2. The user selects one of the valid superiors; and because the approval process is

implemented, they also complete the ‘request reason’ box and submit their

request. The request is now pending approval.

3. Another user with appropriate access rights logs on (an approver) and views the

pending request. As above, it is displayed by the Select Target Object template.

Technical Reference Guide: User Interfaces Version 7.5.1

76 Chapter 5: Format file

This is the point where InputChecked keyword is used. It defines the presentation so

that the template displays the set of valid superiors with the requestor’s choice

selected. Hence, the approver can then accept or reject the request.

Example:

<format * * select InputChecked>

<tr>

 <td><VFSelectTargetObjInput type="radio" checked></td>

 <td><a href="<VFURI>"><VFLabel></td>

 <td><VFAttVal id="hierarchyName"></td>

 <td><VFAttVal id="telephoneNumber"></td>

</tr>

</format>

Assessment order and examples

The order in which format directives are assessed is as follows:

<format attName objClass formatID>

<format attName * formatID>

<format * objClass formatID>

<format * * formatID>

<format attName * * >

<format * objClass * >

<format * * * >

A directive with an optional keyword will, however, take precedence over all the above

if it is appropriate.

To illustrate, consider two format directives:

<format surName orgPerson Details>

 < . . tags . .>

</format>

<format * * Details FirstAtt>

 < . . tags . .>

</format>

If the first attribute were surName, the second directive would take precedence.

Otherwise, it would be ignored and the first directive would be processed.

Example 1

The format directives in this example produce an alternative layout for the Search

Results page. Rather than being in a table, entries are list items.

The following screenshot shows the Search Results page containing the results of a

search on the surname ‘Smith’.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 5: Format file 77

The set of directives is included in the format file (webdir\tmpl\extra.lst)

supplied with the demonstration directory, Deltawing, and has been reproduced

below. For the sake of the example, each directive has been numbered.

<format * * searchR StartEntry> - 1

</format>

<format * * searchR EndEntry> - 2

</format>

<format * * searchR FirstAtt> - 3

<VFHref><VFAttVal>

</format>

<format location * searchR> - 4

which is located at <VFAttVal>

</format>

<format organizationalUnitName organizationalUnit searchR FirstAtt> - 5

Unit <VFHref><VFAttVal>

</format>

<format hierarchyName organizationalPerson searchR> - 6

works in <VFAttVal>

</format>

<format organizationalUnitName organizationalUnit searchR> - 7

Unit <VFAttVal>

</format>

<format telephoneNumber organizationalPerson searchR> - 8

and can be contracted by phoning <VFAttVal>

</format>

<format telephoneNumber organizationalUnit searchR> - 9

has a common telephone number: <VFAttVal>

</format>

<format * * searchR> - 10

<VFAttVal>

</format>

Technical Reference Guide: User Interfaces Version 7.5.1

78 Chapter 5: Format file

For the results shown in the above screenshot, the directives are processed as follows

(the numbers on the left correspond to those in the above example):

1 The HTML tag is generated.

3 The Access Presence tag <VFHref> is replaced with the entry’s first attribute and

linked to the entry’s Expanded Entry page. The <VFAttVal> tag is replaced by

the next attribute value in the entry, first name.

6 The text ‘works in’ is displayed followed by the next attribute value.

4 The text ‘which is located at’ is displayed followed by the next attribute value.

8 The text ‘and can be contacted by phoning’ is displayed followed by the next

attribute value.

2 The HTML tag is generated.

Example 2

This example comprises two format file directives:

<format manager * parentEntry>

 <VFAttVal id=manager DNFormat=nameAndTitle>

</format>

<format * * nameAndTitle>

 <div class="entryName"><VFHRef><VFAttVal id=commonName></div>

</format>

The first directive relates to the attribute manager, and tells Access Presence to apply

the <VFAttVal> tag (see page 80) to the attribute. The tag’s DNFormat argument

invokes the second directive, which tells Access Presence to display the manager’s

commonName as a hypertext link to their entry. (The DNFormat argument is only

relevant to DN type attributes.)

URI and link tags

These tags relate to URIs and links, and are primarily intended for use in the format

file, but may also be used in the Access Presence templates.

<VFURI [id=*CHAR] [scope= {base | entry | *CHAR}]>

This tag is replaced by the URI for the current entry. The id argument is described on

page 31; and the scope argument is described on page 31.

<VFHref [id=*CHAR] [html=1*CHAR]>

This tag is replaced by a hypertext link to the Expanded Entry page displaying the

current entry.

The id argument can be used to create a hypertext link to an extra Expanded Entry

template (see page 11). Set this argument to ’_default’ to cause the standard

Expanded Entry template to be used.

The html argument is described on page 31.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 5: Format file 79

<VFAddValueHref [id=*CHAR] [html=1*CHAR]>

This tag is replaced by a hypertext link to the Modify Value Form for adding a new

value to a multi-value attribute, if the current user has permission to add values of the

attribute.

The id and html arguments are described on page 31.

NOTE: This tag can only be used to generate links on the Expanded Entry page.

<VFModifyValueHref [id=*CHAR] [html=1*CHAR]>

This tag is replaced by a hypertext link to the Modify Value Form for modifying or

removing and existing value of a multi-value attribute, if the current user has

permission to modify or remove values of the attribute.

The id and html arguments are described on page 31.

NOTE: This tag can only be used to generate links on the Expanded Entry page.

<VFOrderHref action={ top | bottom |up | down }

[id=*CHAR] [html=1*CHAR]>

This tag is replaced by a hypertext link that allows a user to change the position of the

selected entry within its list of sibling entries of the same structural object class.

The action attribute has one of the following values:

• top – moves the entry to the top of the group

• bottom – moves the entry to the bottom of the group

• up – moves the entry up one position in the group

• down – moves the entry down one position in the group

The id and html arguments are described on page 31.

NOTE: This tag can also appear in an Expanded Entry template.

<VFOrderResetHref html=*CHAR>

This tag is replaced by a hypertext link that allows a user to move the selected entry to

its default position within its set of sibling entries of the same structural object class.

The default location is based on the alphabetical order of the entry’s first attribute.

The ability to move entries is provided to users by implementing the VFOrderHref

tag (see page 79).

NOTE: This tag can also appear in an Expanded Entry template.

<VFRandomNum>

This tag causes Access Presence to generate a random number. It is used to

generate a value for the id attribute of an HTML tag.

<VFOEL [style=crlf]>

This tag is replaced by an end-of-line character sequence. The character sequence

generated is platform dependent – for example, on Unix LF and on Windows CRLF.

When the style argument is set to crlf, the tag generates the CRLF sequence as

the end-of-line character sequence.

Technical Reference Guide: User Interfaces Version 7.5.1

80 Chapter 5: Format file

Display name tags

Object classes and attributes have display names (and optional icons) which are

displayed by Access Presence.

An attribute has a default display name. It can also have a different display name (and

icon) to be displayed when the attribute is associated with a specific object class.

For example, consider an attribute called name, which is used by two object classes:

country and device. The display name for the attribute when it is used by the

country object class might be ‘Country Name’; and the display name when it is used

by the device object class might be ‘Device Name’. When Access Presence displays

these objects, it displays the appropriate display name for the attribute.

An attribute display name (and icon) is defined through either:

• ViewDS Management Agent – see the help topic View or modify an attribute’s DUA

presentation.

• Stream DUA – see the display-name component of the operational attribute

attributePresentation on page 90.

An object class display name is declared through either:

• ViewDS Management Agent – see the help topic View or modify an object class’s

DUA presentation.

• Stream DUA – see the displayName component of the operational attribute

objectClassPresentation on page 96.

The following tags can also appear in any Access Presence template.

<VFAttVal id=1*CHAR [escval=on|off] [list=1*DIGIT]
[width=1*DIGIT [preChar=CHAR] [postChar=CHAR]]

[scope= {base | user | *CHAR}] [unqualified]
[DNFormat=1*CHAR] [delimiter=1*CHAR]

[valueformat=1*CHAR] [[reference=1*CHAR] |

[path=1*CHAR]] >

This tag is replaced by the set of values for the attribute named by the id argument.

The values are for the attribute in the currently displayed entry.

escval When the escval argument is on, the value generated by this tag

is ‘escaped’ to make it safe for use as a URI.

list This argument can be used to reference a specific value in a
multi-valued attribute. The first value is identified by a 1:

List=1

Access Presence ignores this argument if it is set to zero, a

negative number, or a non-numeric character.

When list is absent, all values are displayed, separated by the

delimiter defined for in the attribute’s DUA presentation. See the

ViewDS help topic View or modify an attribute’s DUA presentation,
or attributePresentation on page 90.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 5: Format file 81

width Specifies the maximum field width for attribute values. If an
attribute value is longer than the width, it is truncated and

appended with the characters ‘..’.

preChar

postChar

The preChar argument specifies a padding character to precede

values shorter than the field width set by the width argument.

The postChar argument specifies a padding character to append

to values whose length is shorter than the field width set by the
width argument.

When neither preChar nor postChar are defined, postChar

defaults to a space character. When both are defined, short
values are centred in the field width defined by width.

scope The scope argument is described on page 31.

unqualified Affects the behaviour of Access Presence when a user searches

on a component of an attribute with a complex syntax (such as

certificates and XML documents). If the argument is declared,

Access Presence replaces the tag with all component values;

otherwise, Access Presence replaces the tag with just the

component value the user searched on.

dnFormat References a format file directive that defines how a DN type

attribute is displayed. It allows more than just the name of an entry

to be displayed to the user – see Example 2 on page 78.

delimiter Identifies a delimiter character that overrides the default set for an

attribute (see the ViewDS Management Agent help topic View or

modify an attribute’s DUA presentation).

For example:

<VFAttVal id='businessCategory' delimiter=';'>

valueformat Identifies the format file specification for the individual values of a

multi-valued attribute. The referenced format file specification is

restricted to the following tags and arguments (all of which are

described in detail elsewhere in this guide):

• VFAttName - all supported arguments allowed

• VFAttIcon - all supported arguments allowed

• VFAttType – all supported arguments allowed

• VFAttVal – escval, width, preChar, postChar, dnformat,

reference or path

• VFQueryURI – id, escval, raw, scope

The referenced format specification can also include optional

format directives (see page 74). For example, the directive
FirstValue allows the first value of a multi-valued attribute to be

formatted differently to subsequent values.

Technical Reference Guide: User Interfaces Version 7.5.1

82 Chapter 5: Format file

reference Specifies an ASN.1 component reference to identify a simple

component of a complex ASN.1 type to be displayed. The simple

components supported are Booleans, integers, strings, object

identifiers, date-time fields and distinguished names. This

argument only applies when the VFAttVal tag is used to format

individual values of a multi-valued attribute. Only one out of
reference and path may be included. If the reference

argument is present then any path argument will be ignored.

path Specifies an XML component path to identify a simple component

of a complex XML type to be displayed. The simple components

supported are Booleans, integers, strings, object identifiers, date-

time fields and distinguished names. The argument only applies

when the VFAttVal tag is used to format individual values of a
multi-valued attribute. Only one out of reference and path may

be included. If the reference argument is present then any

path argument will be ignored.

<VFAttName id=1*CHAR [ifChanged] [force]

[scope={ base | user | *CHAR}]>

This tag is replaced by the display name for the attribute named by the id argument.

ifChanged If the ifChanged argument is declared, the display name is only

displayed if it has changed since the tag was last invoked.

force The force argument overrides the behaviour of the ‘show icons

only’ option presented in the search options on the Search Form.

This can be useful for the search result headings.

scope The scope argument is described on page 31.

<VFAttIcon id=1*CHAR [scope={ base | user | *CHAR}]>

This tag is replaced by the icon associated with the attribute named by the id

argument. The icon must be a .gif file stored in the ../icons directory.

The scope argument is described on page 31.

<VFAttType id=1*CHAR [scope={ base | user | *CHAR}]>

This tag is replaced by the type of the attribute named by the id argument.

The scope argument is described on page 31.

<VFClassName [ifChanged]>

This tag is replaced by the display name of the object class of the current entry. This

can be the entry in the Expanded Entry page or the subentry in a list of subordinate

entries.

If the ifChanged argument is declared, the display name is only displayed if it has

changed since the tag was last invoked.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 5: Format file 83

<VFAttSize id=1*CHAR [scope= {base | user | *CHAR}]

[unqualified] [label=*CHAR] [modifier=1*DIGIT]>

This tag is replaced by the number of values in a multi-valued attribute named by the

id argument.

scope The scope argument is described on page 31.

unqualified Affects the behaviour of Access Presence when a user searches

on a component of an attribute with a complex syntax (such as

certificates and XML documents). If the argument is declared,

Access Presence replaces the tag with all component values;

otherwise, Access Presence replaces the tag with just the

component value the user searched on.

label Allows a label to be set to prefix the number of attribute values.

The label is only displayed if the number of values in the attribute

is greater than 1.

This argument provides support for the HTML rowspan and

colspan properties in the HTML table row and cell elements.

For example, <tr<VFAttSize label=" rowspan">> results

in <tr> for a single-value attribute, and <tr rowspan="2"> for

an attribute with two values.

modifier A signed integer modifier that is applied to the number of attribute

values. Useful, for example, to generate meaningful ‘rowcount’

values.

Target object tags

These tags relate to the target object (see page 7) and can appear in either a target

object template (see page 66) or format file.

<VFAddTargetObjHref [confirm] [html=1*CHAR [id=*CHAR]>

This tag is replaced by a link that adds the current entry to the target-object cache.

Access Presence, however, will only generate the link if the entry is not in the target-

object cache. The confirm, html and id arguments are described on page 31.

<VFDeleteTargetObjHref [confirm] [html=1*CHAR [id=*CHAR]>

This tag is replaced by a link that removes the current entry from the target-object

cache. Access Presence, however, will only generate the link if the entry is not in the

target-object cache. The confirm, html and id arguments are described on

page 31.

<VFSelectTargetObjInput>

This tag generates HTML INPUT controls, each with a NAME and VALUE. The INPUT

controls must be submitted in a FORM that uses the POST method and whose ACTION

is the URL generated by the VFShowTargetObjectsURI tag:

<form method="post" action="<VFShowTargetObjectsURI>">

Each target object template (see page 66) includes a tag which identifies a format-file

specification containing the VFSelectTargetObjInput tag. The result is that

Technical Reference Guide: User Interfaces Version 7.5.1

84 Chapter 5: Format file

INPUT controls are displayed that allow the user to select a target object in the cache.

The behaviour when the form is submitted differs according to each template.

Any parameters for the VFSelectTargetObjInput tag (aside from NAME and

VALUE) should be declared, including a TYPE parameter to ensure the correct type of

element is generated. For example:

<VFSelectTargetObjInput type="checkbox">

The TYPE should be ‘checkbox’ for pages that allow multiple items to be selected, and

‘radio’ for pages that allow only a single item to be selected.

The VFSelectTargetObjInput tag can also appear in a format-file specification

referenced by several other template tags: VFExpandDn, VFExpandSubclass,

VFExpandAltSubord and VFSearchResults. This allows entries in a subordinate

listing or search result – which have been selected by the user – to be added to the

target-object cache.

Alternative hierarchy tags

These tags relate to the target object (see page 7) and can be used in a format file to

list subordinate entries or search results:

• VFAltRemoveHref (see page 53)

• VFAltExpandHref (see page 53)

• VFLabel (see page 50)

The VFAltType tag described below can also be used in a format file or template.

<VFAltType [type=AttributeName] [force]

[scope={ base | user | *CHAR}]>

This tag can be used in a format file and the following templates:

• Select Entries to Add to Alternative Hierarchy template (see page 70)

• Select Entries to Move in Alternative Hierarchy template (see page 71)

It generates the label for the alternative hierarchy identified by the

VFExpandAltSubord tag’s type parameter (see page 52). This can be overridden

by the type attribute of the VFAltType.

The force argument overrides the behaviour of the ‘show icons only’ option

presented in the search options on the Search Form. This can be useful for the search

result headings.

The scope argument is described on page 31.

Approval process tags

The tags in this subsection can be used in templates and format files.

They can be used in the format file to define an alternative presentation of the input

elements displayed on the Modify page during the approval process (see page 154).

The tags should appear in a format-file directive that includes the optional keyword

RequestReason (see page 74). The directive can then be invoked by the format

argument of the VFModifyAtt tag (see page 57).

These tags are also used in the Request Remove Entry template (see page 63).

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 5: Format file 85

<VFRequestReason [rows=1*DIGIT] [cols==1*DIGIT]

This tag is replaced by an HTML INPUT text box that allows the user to enter a

comment when submitting or modifying an update request.

The tag can be included in a format file entry, which has the keyword

RequestReason, in order to change the appearance of the input box. (Note that

Access Presence automatically adds a default input box to the pages that allow an

update request to be submitted or modified.)

The rows and cols arguments set the dimensions of the text box.

<VFRequestSaveInput [html=1*CHAR] >

This tag is replaced by an HTML INPUT element (by default, a submit button) that

allows the user to submit an update request.

The tag can be included in a format file entry, which has the keyword

RequestReason, in order to change the appearance of the input element. (Note

that Access Presence automatically adds a default submit button to a page that

allows a request to be submitted.)

The default value of the html argument (see page 31) is as follows:

'value="Submit" title="Submit" type="submit">'

The HTML input element is only generated if the user has permission to submit the

update request.

<VFRequestCancelInput [html=1*CHAR]>

This tag is replaced by an HTML INPUT element (by default, a submit button) that

allows the user to cancel an update request.

The tag can be included in a format file entry, which has the keyword

RequestReason, in order to change the appearance of the input element. (Note

that Access Presence automatically adds a default button to a page that allows

a request to be cancelled.)

The default value of the html argument (see page 31) is as follows:

'value="Revoke" title="Revoke" type="submit">'

The HTML input element is only generated if the user has permission to cancel the

update request.

<VFRequestApproveInput [html=1*CHAR]>

This tag is replaced by an HTML INPUT element (by default, a submit button) that

allows the user to approve an update request.

The tag can be included in a format file entry, which has the keyword

RequestReason, in order to change the appearance of the input element. (Note

that Access Presence automatically adds a default button to a page that allows

a request to be approved.)

The default value of the html argument (see page 31) is as follows:

'value="Approve" title="Approve" type="submit">'

The HTML input element is only generated if the user has permission to approve the

update request.

Technical Reference Guide: User Interfaces Version 7.5.1

86 Chapter 5: Format file

<VFRequestRejectInput [html=1*CHAR]>

This tag is replaced by an HTML INPUT element (by default, a submit button) that

allows the user to reject an update request.

The tag can be included in a format file entry, which has the keyword

RequestReason, in order to change the appearance of the input element. (Note that

Access Presence automatically adds a default button to a page that allows a request

to be rejected.)

The default value of the html argument (see page 31) is as follows:

'value="Reject" title="Reject" type="submit">'

The HTML input element is only generated if the user has permission to reject the

update request.

 87

Chapter 6

Server-side attributes

This chapter describes the attributes stored by the Directory System Agent (DSA) that

control different aspects of Access Presence. For example, there are presentation

operational attributes that specify how a particular class of entry is displayed by

Access Presence.

This chapter has the following sections:

• Important note

• Concepts

• DUA presentation operational attributes

• User operational attributes

• Approval process operation attributes

• New entry operation attributes

• Other operational attributes

Any DUA can use the attributes described in this chapter. Access Presence uses all

the attributes unless otherwise stated in an individual attribute description.

Important note

The operational attributes described in this chapter can be managed using the Stream

DUA (see the Technical Reference Guide: Directory System Agent).

Alternatively, you can manage the same attributes through the ViewDS Management

Agent. The application has a help system that includes an overview of the concepts

and functionality described in this chapter.

NOTE: See the help topic Key concepts for DUA presentation.

Concepts

When a DUA starts up, it binds to the DSA and obtains user-specific operational

attributes. The DUA then determines the base entry, which allows it to obtain schema

and presentation operational attributes.

Each of these steps is described below.

Obtain user-specific operational attributes

After binding to a DSA, the DUA obtains user-specific operational attributes from the

user’s entry in the Directory Information Tree (DIT).

Technical Reference Guide: User Interfaces Version 7.5.1

88 Chapter 6: Server-side attributes

The attributes are:

• userEntitlement

• userConfig

• privilege

These attributes are normally changed automatically by a running DUA, or by an

administrator performing administration functions with an interactive DUA. The Stream

DUA is not normally used with these attributes.

Obtain a base entry

The DUA attempts to obtain the Distinguished Name (DN) of a base entry from one of

the following in the order shown:

• the user-specific operational attribute, userConfig

• the subschema administrative point that governs the user’s entry

• the configuration-file parameter baseentry (when Access Presence and the DSA

are on different hosts, each has its own configuration file; when located on the

same host, Access Presence and the DSA share the same configuration file)

Obtain operational attributes

The DUA obtains schema and presentation operational attributes from the base entry.

They provide the DUA with its understanding of the DSA’s schema, and configure its

start-up banners and messages, the layout of the Search and Expanded Entry page,

operational limits, and other features.

Schema operational attributes

The DUA obtains the following schema operational attributes (described in the

Technical Reference Guide: Directory System Agent):

• attributeTypes

• objectClasses

• matchingRuleUse

• nameForms

• dITStructureRules

• dITContentRules

• definitions

They define the schema from the base entry, and are usually declared as part of

configuring schema rather than the DUA.

DUA presentation operational attributes

These attributes define the appearance of different aspects of the DUA. They can be

modified using the Stream DUA, or the ViewDS Management Agent, and must be in a

subschema subentry. For information about the Stream DUA, see the Technical

Reference Guide: Directory System Agent.

The DUA presentation operational attributes are described in the following subsection.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 89

DUA presentation operational attributes
These attributes are single-valued, except for attributePresentation and

objectClassPresentation which are multi-valued:

• duaBanners

• attributePresentation

• objectClassPresentation

• searchOptions

• defaultEntitlement

duaBanners

The duaBanners operational attribute specifies:

• information displayed by the DUA at logon (or soon after)

• the banner for the Search Form

• an optional set of key mappings to override the built-in mappings (deprecated)

It is defined as follows:

duaBanners ATTRIBUTE ::= {

 WITH SYNTAX DUABanners

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 18 4} }

DUABanners ::= SEQUENCE {

 start-banner1 [0] TeletexString OPTIONAL,

 start-banner2 [1] TeletexString OPTIONAL,

 startup-message [2] SEQUENCE OF TeletexString OPTIONAL,

 search-banner [3] TeletexString OPTIONAL,

 vt100-key-overrides [4] KeyMappings OPTIONAL,

 pc-key-overrides [5] KeyMappings OPTIONAL }

KeyMappings ::= SEQUENCE OF KeyMapping -- DEPRECATED

KeyMapping ::= SEQUENCE { -- DEPRECATED

 action [0] DUAAction,

 keys [1] SEQUENCE OF Key }

DUAAction ::= ENUMERATED {

 startfield, endfield, -- etc -- refresh }

Key ::= ENUMERATED {

 kb-a, kb-b, -- etc -- alt-fn12 }

Components

start-banner1

start-banner1 specifies a string displayed on the first line of the Search Form page

of Access Presence.

For example: start-banner1 "DELTAWING CORPORATE DIRECTORY"

start-banner2

Deprecated.

Technical Reference Guide: User Interfaces Version 7.5.1

90 Chapter 6: Server-side attributes

startup-message

startup-message specifies a string displayed on the first line of the Welcome page

of Access Presence.

search-banner

search-banner specifies a string displayed at the top of the Search Results page of

Access Presence.

For example:

search-banner "DELTAWING CORPORATE DIRECTORY"

Examples

The following Stream DUA script reads the duaBanners attribute. Because DUA

presentation attributes are available throughout a subschema area, the attributes can

be read from the Deltawing entry itself.

read

 organizationName "Deltawing"

return duaBanners;

The following script sets duaBanners. As the DUA presentation attributes can only

be modified at the subentry where they are held, the modify operation must be

directed to the subschema subentry.

modify

 organizationName "Deltawing"

 / commonName "Subschema"

with changes {

 remove attribute duaBanners,

 add attribute duaBanners {

 start-banner1 "DELTAWING CORPORATE DIRECTORY",

 start-banner2 "On-line Edition",

 startup-message {

 "Caution!!", "System going down at 3.30. p.m."

 },

 search-banner "DELTAWING CORPORATE DIRECTORY"

 }

};

attributePresentation

The multi-valued attributePresentation attribute specifies how attributes are

displayed in the Search, Expanded Entry and Modify Value Form pages. It has the

following ASN.1 definition:

attributePresentation ATTRIBUTE ::= {

 WITH SYNTAX AttributePresentation

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {vf 18 5} }

AttributePresentation ::= SEQUENCE {

 type [0] ATTRIBUTE.&id,

 display-names [1] SEQUENCE OF DisplayName,

 flags [2] AttributeFlags OPTIONAL,

 delimiters [3] TeletexString DEFAULT ";" ,

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 91

 preprocessing [4] SEQUENCE OF PrepFunction OPTIONAL,

 attrib-hiding [5] SEQUENCE OF AttribHiding OPTIONAL,

 replace-strings [6] ReplaceStrings OPTIONAL,

 description [7] UnboundedDirectoryString OPTIONAL,

 dateTimeFormat [8] UTF8String OPTIONAL,

 fields [9] AttributeFields OPTIONAL)

DisplayName ::= SEQUENCE {

 name TeletexString,

 classes SEQUENCE OF OBJECT-CLASS.&id OPTIONAL }

AttributeFlags ::= BIT STRING {

 fixedWidth (0), -- Not Used

 globallyChangeable (1),

 matchingValuesOnly (2),

 approximateMatch (3), -- Not Used

 formattedText (4),

 isEmailAddress (5),

 isURL (6),

 isHTML (7),

 isBinary (8),

 sortDNValues (9)}

AttribHiding ::= SEQUENCE {

 object-class OBJECT-CLASS.&id,

 privileges SET OF AccessLevel }

AccesLevel ::= ENUMERATED {

 none (0),

 read (1),

 update (2),

 admin (3),

 superuser (4)}

ReplaceStrings ::= SEQUENCE OF ReplaceString

ReplaceString ::= SEQUENCE {

 replace (0) TeletexString ,

 with (1) TeletexString }

AttributeFields ::= SEQUENCE OF AttributeField

AttributeField ::= SEQUENCE {

 name (0) UTF8String , -- field name in syntax

 label (1) UTF8String , -- display name for field

 behaviour AttributeFieldBehaviour DEFAULT normal:NULL }

AttributeFieldBehaviour ::= CHOICE {

 normal (2) NULL ,

 formatted (3) NULL ,

 constrained (4) SEQUENCE of UTF8String ,

 uuid (5) NULL ,

 uri (6) NULL }

For the ASN.1 definition of PrepFunction, see Preprocessing functions on

page 111.

Technical Reference Guide: User Interfaces Version 7.5.1

92 Chapter 6: Server-side attributes

Components

type

type specifies the attribute to which the value of attributePresentation applies.

It is either a symbolic name or object identifier. For example:

type surname

type {2 5 4 4}

display-names

display-names specifies a sequence of display name records. Each consists of:

• a string which is the display name of the attribute; and

• a sequence of structural object classes to which display name applies.

When the attribute is displayed in the Expanded Entry page, the DUA displays the

name that corresponds to the structural object class of the entry.

The first display-name record should have an omitted or empty sequence of object

class. It is the default name used – for example, on the Search Form or for a structural

object class that is not listed explicitly. Usually, this default name is sufficient and

further display-name records are unnecessary.

The structural object classes can be specified by name or object identifier.

A display-name string can be appended with a ‘%’ character followed by an integer.

The integer identifies an icon displayed next to (or instead of) the display name. The

icons and their numbers are shown below.

Icon No Icon Application

10 Locality

20 Generic non-leaf entry

21 Org unit entry

22 Org unit entry

23 (No suggested application)

24 (No suggested application)

30 Generic leaf entry

31 Person entry

32 Person entry

33 Group

40 Telephone no.

41 Telephone no.

50 Facsimile no.

51 Device entry

60 Postal address

61 Email address

62 X.400 address

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 93

Icon No Icon Application

70 Description

71 Description

80 Role / See also

81 Role / See also

82

Note

90 Note

91 Note

For example:

display-names {

 {name "Telephone%41"},

 {name "Enquiries%41", classes {organizationalUnit}},

 {name "Phone%41", classes {conferenceRoom}} }

In this example:

• for the object class organizationalUnit, the display name of the attribute type

is Enquiries

• for object class conferenceRoom, the display name of the attribute type is Phone

• for all other object classes, the display name of the attribute type is Telephone

In all cases, the DUA displays icon 41 next to the attribute.

flags

flags specifies a set of flags for an attribute type:

globallyChangeable The attribute is available for global changes. (See Global

changes templates on page 64.)

matchingValuesOnly If the attribute has multiple values, this flag specifies that

the Search Results page will only list the value that

matches the search criteria.

formattedText Specifies that the DUA should display the attribute's value

in a text box. A user can enter a value with simple text

formatting (line-breaks and tabs), which the DUA will

retain.

isEmailAddress Specifies that the attribute's value should be displayed as

an email address.

For example, with the value name@host, the DUA would

display:
name@host

Technical Reference Guide: User Interfaces Version 7.5.1

94 Chapter 6: Server-side attributes

isURL Specifies that the attribute's value is a URL (Universal

Reference Locator; see RFC 1738). For example, with the
value http://www.deltawing.com.au, the DUA would

display:

www.deltawing.com.au

isHTML Specifies that the attribute's value is a HTML text. For

example, with the following value:

Press <a href=telnet://www.deltawing.com.au

/> here to access www.deltawing.com.au

the DUA would display:

Press here to access www.deltawing.com.au

NOTE: Using this flag leaves Access Presence vulnerable

to cross-site scripting attacks.

isBinary Specifies that the attribute's value is a binary and that

Access Presence should not display it, but allow it to be

downloaded.

sortDNValues For an attribute that has multiple DN values, this flag

specifies that Access Presence should sort the values

alphabetically on the Expanded Entry page.

For example:

flags {isEmailAddress}

delimiters

delimiters specifies the set of delimiter characters for the attribute type. It specifies

the valid characters that can be used to separate values of the attribute type within a

single string. It defaults to a semicolon, and usually does not need to be specified.

Of special interest is the delimiter cr (which must be specified using the compound

string format in Stream DUA). This delimiter is the best choice for attributes which may

contain semicolons, such as orAddress. Also, if the first delimiter character is cr, the

DUA displays the attribute with each value on a new line.

Examples:

delimiters {";", cr}

This specifies that values of the attribute entered by the user must be separated by

either semicolons or new-lines; and that when multiple values are displayed, they are

separated by new-lines.

preprocessing

preprocessing specifies a list of preprocessing functions for an attribute type. The

DUA applies the preprocessing functions whenever the user modifies a value of the

attribute.

It only applies to attributes with a string syntax, and is ignored for all others. Structured

attributes (such as orAddress or telexNumber) are represented as strings in the

DUAs, but are stored in the DSA in a structured form. Conversion to and from the

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 95

structured form may result in changes to the value entered by the user, but this is not

preprocessing.

The component is a sequence of preprocessing function arguments, each argument is

labelled by the function name. Two names are defined for each function, one

beginning with ‘m’ for mandatory, the other with ‘op’ for optional. Optional functions

are ignored if the user has turned off preprocessing. For example:

preprocessing {mCompress : NULL, opUniqueValues : NULL}

Note that the ordering of the list is significant as it is the order in which the

preprocessing functions are executed. Executing a list of functions in one order may

not have the same effect as executing them in another.

The functions are described later in this chapter (see Preprocessing functions on

page 111).

attrib-hiding

Deprecated.

replace-strings

Deprecated.

description

Describes how the attribute should be used and is displayed on Modify page.

dateTimeFormat

Defines the date/time presentation of an attribute that has a GeneralizedTime or

UTCTime syntax.

The format string can include the following specifiers (plus arbitrary text):

• %% – replaced with a literal '%' character

• %C – century number [0,99], two characters padded by zero

• %d – day of month [1,31], two characters padded by zero

• %D – %m/%d/%y

• %F – %Y-%m-%d

• %H – hour (24-hour clock) [0,23], two characters padded by zero

• %j – day number of year [1,366], three characters padded by zero

• %m – month [1,12], two characters padded by 0

• %M – minute [0,59], two characters padded by 0

• %R – %H:%M

• %s – fraction of second

• %S – seconds [0,60], two characters padded by zero

• %T – %H:%M:%S

• %y – year without century [0,99], two characters padded by zero

• %Y – year with century

• %z – time zone as hour/minute offset from UTC, four characters padded by zero

preceded by '+' or '-' sign or 'Z' for UTC

• %Z – time zone as hour/minute offset from UTC in XML format, '+' or '-' followed by

2 digits for hour, a colon ':' and the 2 digits for minutes

Technical Reference Guide: User Interfaces Version 7.5.1

96 Chapter 6: Server-side attributes

Examples

The following Stream DUA script reads all values of attributePresentation:

read {

 organizationName "Deltawing" }

return { attributePresentation };

The following script adds an attributePresentation value for the attribute

surname:

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

 add values attributePresentation {

 type surname,

 display-names {{name "Surname"}},

 flags {},

 preprocessing {opCompress},

 attrib-hiding {},

 replace-strings {}

 }

};

fields

Controls the presentation of the component fields of a complex attribute value. This

information is used primarily on the Modify Value Form, although some fields also

affect the Expanded Entry page.

name The name of the field in the syntax definition.

label The display name to use for the field on the Modify Value

Form.

behaviour Provides information about how field values should be

presented, as described below:

normal The default presentation for the syntax - a text input

control.

formatted A textarea input control.

constrained Allows a list of permitted values for the field to be provided.

These will be presented in a select input control.

uuid Indicates that the field holds a value that should be treated

as a string representation of the entryUUID attribute value

of an entry in the directory. Access Presence will display

such fields in the way it does for a DistinguishedName,

using the entry cache to provide candidate values on the

Modify Value Form.

uri Indicates that the field holds a URI that should be

presented as a link on the Expanded Entry page.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 97

objectClassPresentation

This multi-valued operational attribute specifies how directory entries are displayed in

the Expanded Entry page of Access Presence.

It has the following ASN.1 definition:

objectClassPresentation ATTRIBUTE ::= {

 WITH SYNTAX ObjectClassPresentation

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE directoryOperation

 ID {vf 18 6} }

ObjectClassPresentation ::= SEQUENCE {

 object-class [0] OBJECT-CLASS.&id,

 displayName [1] TeletexString,

 sub-classes [2] SEQUENCE OF Subord OPTIONAL,

 expanded-atts [3] SEQUENCE OF ATTRIBUTE.&id,

 special-att [4] AttNumb OPTIONAL,

 -- number is column position --

 modify-atts [5] SEQUENCE OF ATTRIBUTE.&id,

 inherit-atts [6] SEQUENCE OF ATTRIBUTE.&id OPTIONAL,

 username-atts [7] SEQUENCE OF AttNumb OPTIONAL,

 -- number is #chars to use (0 is all) --

 exp-name-label [8] TeletexString OPTIONAL,

 rdn-atts [24] SEQUENCE OF ATTRIBUTE.&id OPTIONAL,

 mand-atts [25] SEQUENCE OF ATTRIBUTE.&id OPTIONAL,

 opt-atts [26] SEQUENCE OF ATTRIBUTE.&id OPTIONAL,

 useNamingOptionals [9] BOOLEAN DEFAULT FALSE,

 reverseLink [10] SEQUENCE OF ReverseLink OPTIONAL,

 relatedEntries [11] RelatedEntries OPTIONAL,

 preferredName [12] ATTRIBUTE.&id OPTIONAL,

 request-atts [13] SEQUENCE OF ATTRIBUTE.&id OPTIONAL

}

ReverseLink ::= SEQUENCE {

 forwardType ATTRIBUTE.&id,

 reverse SEQUENCE OF ReverseLinkItem

}

ReverseLinkItem ::= %M:SetReverseLinkItem SEQUENCE {

 type ATTRIBUTE.&id,

 objectClass OBJECT-CLASS.&id OPTIONAL,

 exclude ReverseLinkOperation OPTIONAL,

 deleteValuesReferencingMoved BOOLEAN DEFAULT FALSE

}

ReverseLinkOperation ::= BIT STRING {

 add (0),

 remove (1),

 modify (2),

 rename (3),

 move (4)

}

Subord ::= SEQUENCE {

Technical Reference Guide: User Interfaces Version 7.5.1

98 Chapter 6: Server-side attributes

 -- subClasses has replaced subClass, which exists for

 -- compatability with old versions

 -- If both are present, subClass is ignored

 subClass OBJECT-CLASS.&id OPTIONAL,

 subClasses SEQUENCE OF OBJECT-CLASS.&id OPTIONAL,

 subClassName TeletexString,

 attributeInfo SEQUENCE OF AttNumb

 -- number is width as percentage -- }

AttNumb ::= SEQUENCE {

 type ATTRIBUTE.&id,

 number INTEGER }

RelatedEntries ::= SEQUENCE {

 alternativeClass [0] OBJECT-CLASS.&id,

 linkAttribute [1] ATTRIBUTE.&id,

 searchForm [2] TeletexString

}

Components

object-class

object-class specifies the object class to which the value of objectClass-

Presentation applies. It is either a symbolic name or object identifier.

For example:

object-class organizationalUnit

object-class {1 3 32 0 2 4 6 0}

displayName

displayName specifies a single display name for the object class. It is the name

displayed to the user instead of the object class’s actual name. For example, the

display name for the organizationalPerson class might be 'Staff member'.

The display name is used by the DUA when a user adds a new subordinate entry, or

moves or deletes an existing entry. As with an attribute, the display name for an object

class can be appended with a ‘%’ character followed by an integer to associate it with

an icon (see display-names on page 92).

For example: display-name "Unit"

sub-classes

sub-classes specifies information about groups of classes subordinate to the object

class. The subordinates within each group are sorted and displayed together.

The information about each group of subordinate classes consists of object identifiers,

display names when displayed as subordinates, and the attribute types and their

position for display.

NOTE: The number attached to the attribute type is its display width (as a percentage of the

total available display width). A width of zero can be specified for an attribute type so

that the attribute is not displayed, but is used when sorting results.

The subordinate classes listed must be consistent with the permitted subordinate

classes defined by the structure rules in the schema attribute dITStructureRules

(see the Technical Reference Guide: Directory System Agent). However, a

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 99

subordinate class specified in dITStructureRules can be omitted from this

component.

For example:

sub-classes {

 {

 subClasses organizationalPerson, organizationalRole,

 subClassName "Staff & Roles",

 attributeInfo {

 {type commonName, number 45},

 {type role, number 33},

 {type telephoneNumber, number 25}

 }

 }

}

This example specifies two subordinate classes for the object class whose

objectClassPresentation is being defined (assumed to be organiza-

tionalUnit): organizationalPerson and organizationalRole. The

attributes displayed are common to both classes.

expanded-atts

expanded-atts specifies the attributes displayed on the Expanded Entry page for

entries of the object class. The order in which the attributes are listed determines the

order in which they are displayed by the DUA.

For example: expanded-atts {telephoneNo, location}

special-att

special-att specifies an attribute, such as telephoneNumber, to be displayed at

the top of the Expanded Entry page and to the right of the entry name.

The column number has been deprecated.

For example: special-att {type telephoneNumber, number 45}

modify-atts

modify-atts specifies attribute types to be presented for users to modify when

adding or modifying an entry. The order in which the attributes are listed determines

the order in which they are displayed by the DUA.

This component should be consistent with the mandatory and optional attributes

specified through the schema attributes objectClasses and dITContentRules

(see the Technical Reference Guide: Directory System Agent). The DUA appends

omitted mandatory attributes, and omits specified attributes that are neither mandatory

nor optional.

For example:

modify-atts {

 organizationalUnitName,

 location,

 telephoneNumber,

 keylink

}

Technical Reference Guide: User Interfaces Version 7.5.1

100 Chapter 6: Server-side attributes

inherit-atts

inherit-atts specifies attributes to be inherited from an entry's immediate superior

when an entry of this object class is created (added).

For example: inherit-atts {location}

username-atts

username-atts specifies the attribute types and numbers used to construct the user

name for entries of this object class. The numbers define the number of characters to

use from a value of the specified attribute type (a value of 0 means use the entire

attribute value).

The attribute types specified must be mandatory for the object class. That is, they

must be specified as mandatory in the objectClasses (or dITContentRules)

schema attributes (see the Technical Reference Guide: Directory System Agent).

For example:

username-atts {

 {type givenName, number 1},

 {type surname, number 6}

}

This example builds user names by concatenating the first character of the attribute

givenName with the first six characters of the attribute surname.

exp-name-label

exp-name-label specifies a label for entries of this object class. It is shown next to

the entry name in the Expanded Entry page.

For example: exp-name-label "NAME: "

useNamingOptionals

useNamingOptionals specifies a Boolean flag to indicate whether optional naming

attributes should be used to form an entry’s DN when values of the optional naming

attributes are provided on the Modify page. (Optional naming attributes are identified

in the name form for the structural object class of the entry.)

For example: userNamingOptionals TRUE

reverseLink

reverseLink specifies rules for automatically maintaining DN references between

entries. When an entry is referenced by a second entry using a DN value,

reverseLinks can be used to automatically include a reverse reference from the

first entry to the second. The reverseLinks rules define when this should happen

and what attributes should be used for the reverse link.

The forwardType field identifies which attribute type (in the object class the

objectClassPresentation applies to) should trigger a reverse link in the

referenced entry.

The reverse field is a list of rules identifying the attribute type (in the referenced

entry) to which the DN of the referencing entry should be added. An element in the list

with an objectClass field will identify the behaviour to use when the referenced

entry is of the identified object class. An element in the list without an objectClass

field identifies the default behaviour.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 101

The exclude field identifies operation types for which the reverse-link value should

not be maintained. The deleteValuesReferencingMoved field, when set to TRUE,

indicates that if the referenced entry is moved to a new superior, both the forward and

reverse links should be removed. For example:

reverseLink {

 {

 forwardType roleOccupant,

 reverse {

 type seeAlso,

 deleteValuesReferencingMoved TRUE

 }

 }

}

This example defines that when a roleOccupant of an organizationalRole

entry refers to another entry, to identify the occupant of the role, the referenced entry

will have a seeAlso attribute value added to it identifying the organizationalRole

referencing it. If the entry referenced by the roleOccupant value is moved to

another superior, the roleOccupant value and the seeAlso value referencing the

organizationalRole entry will be removed.

NOTE: The reverse links and DN tracking functionality overlap considerably (see dnTracking

in the Indexes, extensions and word lists chapter of the Technical Reference Guide:

Directory System Agent). If configured inconsistently they can behave unpredictably.

RelatedEntries

RelatedEntries works in conjunction with reverseLink to provide a workflow for

Access Presence users when they add multiple entries for the same person. The

workflow encourages the user to create roles for a person who already has an entry.

To illustrate, related entries ensure that a person with multiple entries has one main

entry of a particular class (organizationalPerson, for example) and several

related entries of an alternative class (organizationalRole, for example). An

example is shown in Figure 3 on page 102.

When a user adds a new entry for the above organizationalPerson, the workflow

is as follows.

1. Access Presence presents the user with a Search Form (the type of Search Form

is identified by the searchForm field of RelatedEntries).

2. The user searches for ‘John Self’.

3. The Search Results page lists all entries that fit the search criteria, and displays a

button next to each that allows the user to create a new organizationalRole.

The page also gives the user the option to create a new

organizationalPerson entry.

4. The user creates a new organizationalRole for an entry. Access Presence

automatically populates the new entry's attributes with the user's search criteria

(so they don't have to enter the same information twice).

5. Access Presence adds a related-entry link to the new organizationalRole

entry, to all existing organizationalRole entries, and to the

organizationalPerson entry.

Technical Reference Guide: User Interfaces Version 7.5.1

102 Chapter 6: Server-side attributes

Figure 3: Related entries

RelatedEntries has the following fields:

• alternativeClass – the object identifier of the object class to use for the

subsequent entries for an entity (for example, OrganizationalRole).

• linkAttribute – when present, identifies an attribute with

DistinguishedName syntax in the object class identified by the

alternativeClass field. This enables the link back to the original entry – for

example, roleOccupant referring back to the OrganizationalPerson entry.

• searchForm – the name of the Search Form used to determine whether an entity

already exists (this should match a forms.type field in the searchOptions

attribute). The Search Form should restrict matching object classes, using the

filter-for field to specify a single-occurrence object class (for example,

OrganizationalPerson).

preferredName

A preferred name attribute can be defined for a class of entry. The value of the

attribute is then used as an entry’s label in the Access Presence pages, providing an

alternative to using the default label. The default is the entry’s mandatory naming

attribute defined by schema.

The value of a preferred name attribute also appears in the labels generated by the

VFLabel tag (see page 50) and for links to Distinguished Names. The preferred name

can be accessed through either the Stream DUA or through the ViewDS Management

Agent – see the help topic View or modify an object class’s DUA presentation.

request-atts

This field identifies the attributes that can be accessed by a ‘requestor’ in the approval

process (see page 154).

Examples

The following script reads all values of the objectClassPresentation attribute:

read { organizationName "Deltawing" }

return { objectClassPresentation };

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 103

The following Stream DUA script adds an objectClassPresentation value for the

object class organizationalUnit:

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

 add values objectClassPresentation {

 class organizationalUnit,

 displayName "Unit",

 sub-classes {

 {

 subClass organizationalPerson,

 subClassName "Staff",

 attributeInfo {

 {type commonName, number 45},

 {type title, number 30},

 {type telephoneNumber, number 25}

 }

 }

 {

 subClass organizationalUnit,

 subClassName "Unit",

 attributeInfo {}

 }

 },

 expanded-atts { manager, postalAddress, function },

modify-atts { manager, postalAddress, chargeCode,

function }

 }

};

This sets the display name for the object class to Unit and defines how the two

subclasses organizationalPerson and organizationalUnit should be

displayed. It declares three attributes to be displayed when the entry is expanded, and

four attributes to be displayed for modification.

searchOptions

This single-valued operational attribute specifies the characteristics of the Search

Forms, along with other miscellaneous details.

searchOptions ATTRIBUTE ::= {

 WITH SYNTAX SearchOptions

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 18 7} }

SearchOptions ::= SEQUENCE {

 forms [0] SEQUENCE OF SearchForm,

 context-atts [1] SEQUENCE OF ATTRIBUTE.&id,

 abbrev-atts [2] SEQUENCE OF AttribPair OPTIONAL,

 -- first is abbrev of second --

 flags [3] BIT STRING {

 autoExpand(0),

 topDownSuperiors(1),

 complexSearching(2) } OPTIONAL,

 pseudo-rdn-level [4] INTEGER DEFAULT 1,

Technical Reference Guide: User Interfaces Version 7.5.1

104 Chapter 6: Server-side attributes

 max-att-label-len [5] INTEGER DEFAULT 11 }

SearchForm ::= SEQUENCE {

 type [0] UnboundedDirectoryString,

 filter-for [1] SEQUENCE OF OBJECT-CLASS.&id OPTIONAL,

 base-object [2] DistinguishedName OPTIONAL,

 row1-atts [3] SEQUENCE OF AttField,

 row2-atts [4] SEQUENCE OF AttField OPTIONAL,

 row3-atts [5] SEQUENCE OF AttField OPTIONAL,

 srch-sort-atts [6] SEQUENCE OF SortKey,

 hierarchyNameBehaviour [7] HierarchyNameBehaviour DEFAULT

 abbreviated,

 orderingStrategy [8] OrderingStrategy OPTIONAL,

 orderEmptyFieldsAsGreater [9] BOOLEAN DEFAULT FALSE

}

OrderingStrategy ::= ENUMERATED {

 sortKeys (0),

 searchFields (1),

 firstValueExactMatch (2),

 anyValueExactMatch (3)

}

AttField ::= %M:SetAttField SEQUENCE {

 type ATTRIBUTE.&id,

 number INTEGER,

 dnAtt BOOLEAN DEFAULT TRUE,

 component ComponentField OPTIONAL,

 name UTF8String OPTIONAL,

 location [0] AttFieldLocation Default both

}

ComponentField ::= SEQUENCE {

 identifier ComponentKind,

 rule MATCHING-RULE.&id

}

ComponentKind ::= CHOICE {

 reference [0] ComponentReference,

 path [1] ComponentPath

}

HierarchyNameBehaviour ::= ENUMERATED {

 none (0),

 abbreviated (1),

 unabbreviated (2)

}

AttFieldLocation ::= ENUMERATED {

 request (1),

 result (2),

 both (3)

}

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 105

Components

SearchOptions

forms Specifies the characteristics for a DUA Search Form.

context-atts Specifies the attribute types that can hold a context. A context is

a set of default values entered into the Search Form whenever

the user clears the form ‘to the context’ – for example, a

telephone-number prefix.

The component is a sequence of attribute types. For example:

context-atts {

 organizationalUnitName,

 location,

 telephoneNumber

}

abbrev-atts Specifies abbreviated attributes to be used in search requests. It

is a sequence of attribute pairs: the first attribute in a pair is the

abbreviated equivalent of the second.

If an attribute type is specified for a Search Form and is also

specified by this component as having an abbreviated equivalent,

the abbreviated equivalent attribute type (and value) is requested

in a search instead of the full attribute type.

The abbreviated attributes can be generated by the DSA (for
example hierarchyName) but can be any alternative attribute.

For instance, you might choose to display a user’s initials in place

of their given name to save space on the Search Results page.

flags

pseudo-rdn-

level

max-att-

label-len

Deprecated.

SearchForm

type The name of the form – typical values are Name search,

Function search, and Unit search. It allows arbitrary

search forms, including ones with base objects in other DSAs

and other schema administrative areas.

filter-for A list of object classes to include in the search filter constructed
from the form. For example, for the Unit search form, it should

list the object classes considered to be units.

base-object The base object for the search. If absent, the base object is the
same as the configuration-file parameter base-entry.

row1-atts The list of attributes, their column positions (as a percentage of

total available width) running across the first row of search fields
on the form, and a dnAtt Boolean. Only row1-atts are

displayed in the Search Results page (although Access Presence

allows the user to alter this).

Technical Reference Guide: User Interfaces Version 7.5.1

106 Chapter 6: Server-side attributes

The dnAtt Boolean indicates whether the attributes in the DN of

entries should be searched as well as the attributes in the entries
themselves. If it is set to false then DN will not be searched.

This is appropriate if the structure rules allow the attribute type to

be present in the DN of entries belonging to the object classes to

be searched and such occurrences are to be excluded from the

search evaluation.

If multiple attributes are given at the same column in the same

row, the attribute is overloaded. This means:

• There is one input field for the set of overloaded attributes.

• A search will try to match values for all the overloaded
attributes. For example, if attributes telephoneNumber and

extensionNumber are overloaded, and the user enters a

value 3456 on the search form, the DUA will construct a filter

telephoneNumber=3456 or extensionNumber=3456.

• All the overloaded attributes are requested to be returned from

a DSA search.

• The attribute type (out of the set of overloaded attribute types)

to be displayed in the search results is the first one for which a

value has been returned when scanning through the list of

overloaded attribute types in a particular order. This is the
order specified by the disp-pref component of the

userConfig attribute in the user’s entry (if any) followed by

the order of occurrence of the overloaded attributes in the

Search Form Attributes.

row2-atts The list of attributes and their column positions for the second

row of search fields on the form.

row3-atts The list of attributes and their column positions for the third row of

search fields on the form.

srch-sort-atts A list of the attribute types that defines the sort order for search

results.

The search results are first sorted by object class to ensure that

all entries of the same object class are displayed together. Next,

entries of the same object class are sorted on the first attribute
type in srch-sort-atts. If there are values of the first attribute

type that are the same, then values of the second attribute type in
srch-sort-atts are compared, and so on.

Note that when comparing attribute values, all the values that

exactly match the value entered into the corresponding input field

are sorted ahead of all other values. The values that do not

match the value entered into the input field are sorted

lexicographically, and follow the exact matches.

For example:

forms {

 {

 type "Name search",

 filter-for {},

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 107

 row1-atts {

 {type surname, number 0},

 {type givenName, number 20},

 {type organizationalUnitName, number 40},

 {type location, number 60},

 {type telephoneNumber, number 80},

 {type extensionNumber, number 80}

 },

 srch-sort-atts { surname, givenName

 }

}

hierarchyName

Behaviour

This field is used to control how organizationalUnitName

values are displayed on the Search Results page. By default, the
organizationalUnitName attribute is displayed as a pair of

abbreviated values derived from the DN of the displayed entry.

The hierarchyNameBehaviour field can be used to alter this

default behaviour. When set to none, the

organizationalUnitName behaves like any other attribute:

the only organizationalUnitName attribute values displayed

are those actually defined in the current entry (that is, the DN is
ignored). When set to unabbreviated, the

organizationalUnitName is displayed using the same values

from the DN as are used in the default behaviour except these

values will not be abbreviated.

For example: hierarchyNameBehaviour none

ordering

Strategy

This field identifies the search ordering strategy for the Search

Results page. (To set the results ordering for a Search Form

through the ViewDS Management Agent, see the help topic View

or modify a Search Form.)

orderEmpty

FieldsAsGreater

Whether Access Presence sorts empty values to the bottom
(TRUE) or to the top (FALSE) of the Search Results page.

AttField

The AttField type is referenced by the row1-atts, row2-atts and row3-atts

fields in the SearchForm type. It allows components of complex syntaxes to be

identified as separate fields that can be searched individually from a Search Form

page. (For information about complex syntaxes, see attributeSyntax in the

Schema chapter of the Technical Reference Guide: Directory System Agent.) The

referenced component should be a syntax supported for searching – that is, a string,

time or integer type.

The name in AttField allows the name of a search field to be specified. This name

is the label displayed to the user, and overrides the attribute display name.

The location in AttField defines whether a search field is displayed on the

Search Form page, Search Results page, or both (the default).

Technical Reference Guide: User Interfaces Version 7.5.1

108 Chapter 6: Server-side attributes

Examples

The following Stream DUA script reads the searchOptions attribute:

read {

 organizationName "Deltawing"

}

return { searchOptions };

The following script modifies an existing value of searchOptions by removing the

old value and adding a new value:

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

 remove attribute searchOptions,

 add values searchOptions {

 forms {

 {

 type "Name search",

 filter-for {},

 row1-atts {

 {type surname, number 0},

 {type givenName, number 20},

 {type organizationalUnitName, number 40},

 {type location, number 60},

 {type telephoneNumber, number 80},

 {type extensionNumber, number 80}

 },

 srch-sort-atts { surname, givenName }

 }

 },

 context-atts {

 organizationalUnitName,

 location,

 telephoneNumber

 },

 flags {autoExpand, topDownSuperiors}

 }

};

This example defines a single Search Form called ‘Name search’ and sets up five

search fields for the attributes surname, givenName, organizationalUnitName,

location, and telephoneNumber. The last of these attributes is overloaded with

extensionNumber. Results will be sorted by surname, then givenName. The third,

fourth and fifth of these attributes are set up as context attributes.

defaultEntitlement

This single-valued operational attribute specifies limits and functional capabilities for

a user. Access Presence enforces these limits (however, other DUAs may not

observe them).

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 109

This attribute should be placed in the subschema subentry. It provides a system-wide

limit for all users. However, it can be overridden for a specific user by placing the

userEntitlement attribute (which has the same syntax) in the user’s entry.

This attribute has the following ASN.1 definition:

defaultEntitlement ATTRIBUTE ::= {

 WITH SYNTAX UserEntitlement

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 18 12} }

UserEntitlement ::= SEQUENCE {

 limit [1] Limit OPTIONAL,

 func-cap [2] FunctionalCapabilities OPTIONAL,

 gc-limit [3] Limit OPTIONAL

 -- for global changes: timeout is actually

 -- subsearch limit -- }

Limit ::= SEQUENCE {

 time-limit [0] INTEGER,

 size-limit [1] INTEGER,

 timeout [2] INTEGER }

FunctionalCapabilities ::= BIT STRING {

 globalChanges(0),

 sortSubs(1),

 moveMultipleSubs(2),

 viewUsers(3),

 printing(4),

 statistics(5),

 billing(6),

 viewLogs(7),

 allowSavePassword(8) }

Components

limit

limit specifies several time and size limits, and is a sequence of three integers:

• time-limit is the time limit in seconds to request for each DSA operation. A

typical value is 30 seconds.

• size-limit is the size limit (number of entries to return) to request for a search-

one-level operation (i.e. listing immediate subordinates).

• timeout is the maximum inactive time in seconds, after which the DUA will

disconnect from the DSA. A typical value is 1800 seconds (30 minutes).

If this component is absent (and is not supplied by a value of userEntitlement in

the user’s entry), the DUA does not set any limits never times out.

For example:

limit { time-limit 30, size-limit 99, timeout 1800 }

Technical Reference Guide: User Interfaces Version 7.5.1

110 Chapter 6: Server-side attributes

func-cap

func-cap specifies functional capabilities available to a user with update or

administrator access. (Super-users have implicit access to all functional capabilities

provided by the DUA.)

The following functional capabilities can be specified:

Identifier Description

globalChanges Allows the user to modify all entries within their assigned

subtree that satisfy certain selection criteria with a single

command.

sortSubs Allows the user to change the sort order of subordinates on

an expanded entry form (for example, by selecting them and

moving them to the top of the list of entries for that

subordinate class).

moveMultipleSubs Allows the user to select multiple subordinate entries on an

expanded entry form and then move them to another entry.

viewUsers Deprecated.

printing Allows the user to invoke the Printed Reports command of

Access Presence.

statistics

billing

viewLogs

allowSavePassword

Deprecated.

For example:

func-cap {globalChanges, sortSubs, printing}

gc-limit (not supported by Access Presence)

gc-limit specifies time and size limits for the global-changes facility. The global-

changes facility allows a user to apply a single command to modify all entries in a

specific subtree that satisfy their selection criteria.

To do this efficiently, and to handle when the number of entries exceeds the system

limits (set by the parameters sizelimit and timelimit), the DUA uses a special

method of searching for the entries to be modified. It attempts a full subtree search on

the base entry. If this search results in a size limit or time limit problem, the search is

broken into a listing of immediate subordinates followed by a full subtree search on

each subordinate. If these subordinate searches fail with a size limit or time limit, they

are handled in the same way, recursively.

For best performance the size limit and time limit requested by the DSA for the full

subtree searches may need to be greater than the normal limits for searching. The

gc-limit component allows suitably relaxed limits to be specified. It is a sequence

of three integers:

• time-limit is the time limit in seconds to use for global changes searches

(typically, 75 seconds).

• size-limit is the size limit to use for global changes searches (typically, 500).

• timeout is not a timeout at all, but is the size limit to use for global changes

subordinate searches (typically, 10000).

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 111

If this component is absent (and is not supplied by a value of userEntitlement in

the user’s entry), the DUA does not set any limits in its global changes operation

requests, and the DSA’s sizelimit and timelimit apply. The DSA’s limits also apply if

the specified limits exceed the DSA’s.

For example:

gc-limit { time-limit 75, size-limit 500, timeout 10000 }

Examples

The following Stream DUA script reads the defaultEntitlement attribute:

read { organizationName "Deltawing" }

return { defaultEntitlement };

The following script modifies an existing value of defaultEntitlement by removing

the old value and adding a new value:

modify {

 organizationName "Deltawing"

 / commonName "Subschema"

}

with changes {

 remove attribute defaultEntitlement,

 add defaultEntitlement {

 limit { time-limit 30, size-limit 100, timeout 1800 },

 func-cap {globalChanges, sortSubs, printing},

 gc-limit { time-limit 75, size-limit 500, timeout 10000 }} };

This sets the system-wide parameters and functional capabilities to the values

specified.

Preprocessing functions

The preprocessing functions can only be applied to attributes that have a string syntax

(for example, TeletexString, DirectoryString). A preprocessing function is ignored if it

is not specified according to the descriptions in this subsection.

A preprocessing function is described by its ASN.1 tag (which translates to a choice of

value) and its value (which supplies an argument to the function).

PrepFunction ::= CHOICE {

 opCompress [0] NULL,

 mCompress [1] NULL,

 opCompare [2] TeletexString,

 mCompare [3] TeletexString,

 opRemove [4] TeletexString,

 mRemove [5] TeletexString,

 opReplace [6] TeletexString,

 mReplace [7] TeletexString,

 opCase [8] TeletexString,

 mCase [9] TeletexString,

 opReplaceWords [10] ReplaceStrings,

 mReplaceWords [11] ReplaceStrings,

 opCompareWords [12] ReplaceStrings,

 mCompareWords [13] ReplaceStrings,

 opLength [14] TeletexString,

Technical Reference Guide: User Interfaces Version 7.5.1

112 Chapter 6: Server-side attributes

 mLength [15] TeletexString,

 opTruncate [16] INTEGER,

 mTruncate [17] INTEGER,

 opUniqueValues [22] NULL,

 mUniqueValues [23] NULL,

 opPhone [24] TeletexString,

 mPhone [25] TeletexString,

 opCommonName [26] AttribPair,

 mCommonName [27] AttribPair,

 opBuildAttribute [28] AttribBuildSpec,

 mBuildAttribute [29] AttribBuildSpec,

 opBuildAbbrev [30] AttribAbbrevSpec,

 mBuildAbbrev [31] AttribAbbrevSpec,

 opRegexpMatch [32] UTF8String,

 mRegexpMatch [33] UTF8String

AttribPair ::= SEQUENCE {

 attrib1 ATTRIBUTE.&id,

 attrib2 ATTRIBUTE.&id }

AttribBuildSpec ::= SEQUENCE {

 string TeletexString,

 attributes SEQUENCE OF ATTRIBUTE.&id }

AttribAbbrevSpec ::= SEQUENCE {

 abbrevAtt [0] ATTRIBUTE.&id,

 sourceAtt [1] ATTRIBUTE.&id,

 delimiter [2] TeletexString OPTIONAL }

Two additional preprocessing functions are applied implicitly when attribute

information is modified. If the attribute is single valued, the DUA checks whether the

user entered multiple values, and reports an error if so. (To disable this, explicitly

define the delimiters for the attribute to be an empty string.) If the attribute is multi-

valued, the DUA checks that the values are all different and removes duplicates if

necessary.

Compress

This preprocessing function removes leading and trailing spaces, multiple spaces

between words, and unprintable characters (except for carriage-return characters)

from an attribute’s value.

For example:

opCompress: NULL

Compare chars

This preprocessing function compares all characters in an attribute’s value against a

set of specified characters. It reports an error if any characters in the value are not in

the set.

It consists of one of the characters A, N, L, D, or U, which specifies a basic character

set. Optionally, this is followed by either an I or E, to include or exclude a subsequent

set of characters.

A All characters

N No characters

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 113

L Alpha characters only

D Digits only

U Alpha-numeric characters only

Istring The attribute’s value must include any of the characters in string

Estring The attribute’s value must not include any of the characters in string

For example, to report an error if punctuation is entered for a new or changed attribute

value, specify: mCompare: "AE.,:;"

Remove chars

This preprocessing function compares all characters in an attribute’s value against a

set of specified characters. It removes any characters from the value that are not in

the set.

The supplied value specifies the set of permitted characters, which is defined in the

same way as for the Compare chars function.

For example, to remove punctuation from value, specify: opRemove: "AE.,:;"

Replace chars

This preprocessing function replaces certain characters in an attribute’s value with

other characters.

The supplied value specifies the substitutions. It has the form: RcharsWchars

The characters following the R specify the characters to be replaced; the characters

following the W are the replacements. For example, to replace all space characters

with underscores and all # characters with $ characters, specify: opReplace: "R

#W_$"

Case

This preprocessing function converts the characters in an attribute value to upper,

lower, or mixed case.

The conversion algorithm for mixed case makes some assumptions about the usage

of certain punctuation characters – for example, an apostrophe is assumed to be used

as in the example, D'Rosario. There is no special recognition of certain standard

naming prefixes such as ‘Mac’. Therefore, a name such as ‘MacKenzie’ would be

converted to ‘Mackenzie’. These sorts of problems in the mixed case conversions

mean that it is preferable to only offer this preprocessing function in an optional

application. It can then be overridden by a DUA user.

The supplied value specifies the type of conversion:

U Convert to upper case

L Convert to lower case

M Convert to mixed case (the first letter of each word in upper case; and other

letters in lower case)

For example, to convert an attribute value to mixed case: opCase: "M"

Technical Reference Guide: User Interfaces Version 7.5.1

114 Chapter 6: Server-side attributes

Replace words

This preprocessing function replaces certain words in an attribute value. Words that

appear in the replacement list are replaced by a replacement word.

For example, to convert addresses to a standard abbreviated form:

opReplaceWords: {

 { replace "Road", with "Rd." },

 { replace "Street", with "St." },

 { replace "Avenue", with "Ave." }

}

Compare words

This preprocessing function compares the words in an attribute value with a

replacement list. It reports an error if there is a word in the attribute value that is not in

the list.

The with words should be empty strings.

For example, to restrict values of an attribute to either Dr, Mr, Mrs, Ms, or Miss:

opCompareWords: {

 { replace "Dr", with "" },

 { replace "Mr", with "" },

 { replace "Mrs", with "" },

 { replace "Ms", with "" },

 { replace "Miss", with "" }

}

Access Presence displays the compare words for an attribute as permitted values in a

list box. Additional constraints apply to the attribute if specified in the

attributeSyntax field of the attributeType operational attribute (see

attributeSyntax in the Schema chapter of the Technical Reference Guide:

Directory System Agent.).

Length

This preprocessing function checks whether the length of an attribute value is within

specified bounds, and reports an error if it is not.

The supplied value specifies the bounds:

Lnum length num

Gnum length num

GZnum length > num or length = 0

Lnum1Gnum2 or

Gnum2Lnum1

length num1 and length num2

Lnum1GZnum2 or

GZnum2Lnum1

length num1 and length num2

or length = 0

For example, to specify that attribute values are to be either five or six characters

long: opLength: "G5L6"

To specify an exact length, use LnumGnum with both num terms set to the exact

length.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 115

Truncate

This preprocessing function truncates an attribute value to the length specified by the

supplied value (an integer). For example, to specify that an attribute value is to be

truncated to eight characters: opTruncate: 8

Unique values

This preprocessing function checks that the values in a string are unique within an

area of the DIT on the local DSA. If they are not unique, the function reports an error.

NOTE: As applying this function involves a search of the directory, the attribute must be

indexed.

For example: opUniqueValues: NULL

Phone

This preprocessing function checks whether an attribute value has one of the

specified telephone number syntaxes. If the value conforms to one of the syntaxes,

the function preprocesses the value to a standard format (also specified by the syntax

it matches). If it does not conform, the function reports an error.

Each specified syntax defines an acceptable pattern of numbers. It is a string

containing one of more patterns, separated by semi-colons. When more than one

pattern is specified, strings are compared for matches from left to right and the first

match is selected for preprocessing.

A telephone number syntax can contain the following characters:

d Pattern matches a digit (0-9) – for example, (dd) ddd dddd

a Pattern matches an alphanumeric character – for example, ddd-aaa

0123456789 Any digit may be placed in specific position in the string and an

entered value must match exactly – for example, 13 dd dd

[...] Pattern matches any single character within [] – for example, 041[789]

ddd ddd

() + -

space

Need not be present but would be inserted if not present and removed

if not appropriate.

Note that leading and trailing spaces in the string are inserted into the formatted

telephone number.

In the special case where two consecutive format strings are equal (when ignoring the

formatting characters () + - space) then the positions of any spaces will determine

the matching format which will be used for preprocessing. That is, the format string

that matches the most consecutive spaces from the beginning will be selected.

For example: mPhone: "13 dd dd;(dd) ddd dddd;(ddd) ddd ddd"

With this example:

• 07 2584505 would be formatted to (07) 258 4505;

• 072 584505 would be formatted to (072) 584 505; and

• 072584505 would be formatted to (07) 258 4505 because of the ordering of the

format string.

Technical Reference Guide: User Interfaces Version 7.5.1

116 Chapter 6: Server-side attributes

Common name

This preprocessing function checks whether a value contains the values of two other

attributes, and reports an error if it does not. It should be specified as one of the

preprocessing functions for the commonName attribute to ensure that its value contains

the surname and one of the givenName attribute values of the entry.

For example: opCommonName: { attrib1 givenName, attrib2 surname }

Build attribute

This preprocessing function builds attribute values from a combination of other

attribute values or constant text. Its main purpose is to allow the commonName

attribute value to be modified automatically whenever one of the personalTitle,

givenName, or surname attribute values are modified.

The supplied value consists of a TeletexString and a list of attributes, and specifies

how the first attribute in the attribute list is built. The string can include the

following:

• % – the built attribute is formed by replacing each % character with the next attribute

in the attributes list

• ~ – an escape character that allows a literal % or ~ to be included in the built

attribute

• constant text

For example:

opBuildAttribute: {

 string "% % %",

 attributes { commonName, personalTitle, givenName, surname } }

Abbreviate attribute

This preprocessing function builds an attribute value by abbreviating other attribute

values (it takes the first letter from each). A common use of this function is to

automatically update an initials attribute when a value of the givenName attribute

is created or modified.

The supplied value consists of two attributes and a delimiter:

• abbrevAtt names the abbreviated attribute to be generated or maintained

• sourceAtt names the attribute which supplies the non-abbreviated value

• delimiter is typically a ‘.’ or ‘ ’

The abbrevAtt attribute is formed by dividing the value of sourceAtt into words

separated by spaces, taking the first letter of each word, and concatenating them with

the delimiter (if present) between each letter and after the last.

This preprocessing function should be specified for sourceAtt.

For example:

opAbbrevAtt: {

 abbrevAtt initials,

 sourceAtt givenName,

 delimiter '.' };

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 117

Regular expression match

This preprocessing function verifies an attribute’s value according to whether it

matches a provided regular expression (that conforms to the XPath specification).

The regular expression is not anchored. The ‘^’ and ‘$’ characters are the start and

end anchors respectively.

User operational attributes

Access Presence reads attributes from a user’s entry, which affect Access Presence’s

operation for that user. They are:

• userEntitlement

• userConfig

• privilege

The above attributes are described in this section, except for privilege which is

described in the Managing Security chapter of the Technical Reference Guide:

Directory System Agent.

userEntitlement

This single-valued operational attribute specifies limits and functional capabilities

assigned to a particular user. Access Presence enforces these limits (other DUAs may

not).

To apply this attribute’s limits to a user, place it in the user’s entry. If a user’s entry

does not have this attribute, the system-wide limit defined by defaultEntitlement

in the subschema subentry applies. The attribute has the following ASN.1 definition

(for the attribute’s syntax, see defaultEntitlement on page 108):

userEntitlement ATTRIBUTE ::= {

 WITH SYNTAX UserEntitlement

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 18 8} }

Examples

The following Stream DUA script reads the userEntitlement attribute for the entry

organizationName "Deltawing" / commonName "John Smith" :

read {

 organizationName "Deltawing"

 / commonName "John Smith" }

return { userEntitlement };

The following script modifies an existing value of userEntitlement by removing the

old value and adding a new value:

modify {

 organizationName "Deltawing"

 / commonName "John Smith" }

with changes {

 add userEntitlement {

 limit { time-limit 30, size-limit 100, timeout 1800 },

 func-cap {globalChanges, sortSubs, printing},

Technical Reference Guide: User Interfaces Version 7.5.1

118 Chapter 6: Server-side attributes

 gc-limit { time-limit 75, size-limit 500, timeout 10000 }

 }

};

This sets the user's parameters and functional capabilities to the values specified.

NOTE: The values of userEntitlement can also be added to user entries by a user with

admin or superuser privilege using Access Presence.

userConfig

This operational attribute records the user’s preferred settings for several user-specific

options in Access Presence.

userConfig ATTRIBUTE ::= {

 WITH SYNTAX UserConfig

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID {vf 18 9} }

UserConfig ::= SEQUENCE {

 context [0] SEQUENCE OF AttString OPTIONAL },

 default-base [1] DistinguishedName OPTIONAL

 disp-pref [2] SEQUENCE OF ATTRIBUTE.&id OPTIONAL,

 language [3] Language OPTIONAL,

 codepage [4] CodePage OPTIONAL } DEPRECATED

AttString ::= SEQUENCE {

 attribute ATTRIBUTE.&id,

 valueString TeletexString }

context

context specifies the user’s context at DUA startup. It is a list of attribute types with

string values. If these attribute types are in a Search Form, and the context is enabled,

then the string values are displayed in the appropriate fields so that the user does not

have to enter them.

For example: context {{attribute telephoneNumber, value "(03) 9876"}}

default-base

default-base specifies a base object to use in directory searches in preference to

the base-entry specified in the configuration file. If used, it typically specifies a sub-unit

below the base entry.

For example:

default-base { organizationName "Deltawing" / organizationalUnit "R&D Labs"}

disp-pref (not supported by Access Presence)

disp-pref specifies the user’s display preferences on a search form when attributes

are overloaded and values of more than one of the overloaded attributes are

available.

For example, if telephoneNumber and extensionNumber are overloaded, and a

value is available for both, then the DUA must decide which value to show. It chooses

the first attribute in the disp-pref sequence of attribute types. It must be set using

the Stream DUA.

For example: disp-pref {extensionNumber, telephoneNumber}

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 119

Approval process operation attributes

The operation attributes for the approval process (see page 154) are described below.

viewDSUpdateRequest ATTRIBUTE ::= {

 WITH SYNTAX UpdateRequest

 EQUALITY MATCHING RULE directoryStringFirstComponentMatch

 USAGE directoryOperation

 ID id-viewDS-oa-updateRequest

}

UpdateRequest ::= SEQUENCE {

 identifier [0] UnboundedDirectoryString,

 -- Recommended that this is a UUID in string representation

 activity [1] SEQUENCE SIZE (1..MAX) OF UpdateActivity,

 -- Every request should include a creation activity record

 details [2] UpdateRequestDetails,

 object [3] DistinguishedName OPTIONAL

 -- Object name only required when:

 -- the request is not stored in the entry it applies to;

 -- and it is not an add subordinate request

}

UpdateActivity ::= SEQUENCE {

 action [0] UpdateAction,

 name [1] DistinguishedName,

 at [2] GeneralizedTime,

 description [3] UTF8String OPTIONAL

}

UpdateAction ::= ENUMERATED {

 created (0),

 updated (1),

 approved (2),

 rejected (3),

 cancelled (4),

 notification (5)

}

UpdateRequestDetails ::= CHOICE {

 add [0] SEQUENCE {

 structural [1] OBJECT-CLASS.&id,

 nameform [2] NAME-FORM.&id OPTIONAL,

 content [3] SET OF Attribute

-- The distinguished values will be determined from the

-- entry content and schema when the request is approved.

-- The parent is determined by the entry the request

-- is stored in.

 },

 remove [1] NULL,

 move [2] DistinguishedName,

 -- The distinguished name of the new superior

 modify [3] SET OF Attribute

}

The set of attributes for the modify request lists all the attributes modified in the

request and the resulting set of values for each attribute. This will include attributes

with no values, indicating that the attribute was removed.

Technical Reference Guide: User Interfaces Version 7.5.1

120 Chapter 6: Server-side attributes

New entry operation attributes

These operational attributes relate to when a user creates a new entry:

• newSubordinateModifyRights

• permittedNewSubordinates

• permittedImports

newSubordinateModifyRights

Access Presence uses this attribute when a user adds a new entry. It ensures that the

user is presented with only the attributes they are permitted to access according to

the access-control scheme.

newSubordinateModifyRights ATTRIBUTE ::= {

 WITH SYNTAX NewSubordinateModifyRights

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID id-adacel-oa-newSubordinateModifyRights

}

SubordinateModifyRights ::= %M:SetSubordinateModifyRights SEQUENCE {

 structural OBJECT-CLASS.&id,

 auxiliaries SET OF OBJECT-CLASS.&id,

 modifyRights ModifyRights

}

NewSubordinateModifyRights ::= SEQUENCE OF SubordinateModifyRights

A SubordinateModifyRights element is created for each combination of auxiliary

object class values that are permitted by the schema and the access controls.

When a user attempts to add a new subordinate entry, then the parent entry’s

newSubordinateModifyRights is obtained. This describes the modify rights for a

subordinate entry, which allows Access Presence to display an Add page that takes

the appropriate access controls into account.

It also allows Access Presence to populate the objectClass attribute of a new entry

with suggested auxiliary object class values. However, this only occurs if the

newSubordinateModifyRights indicates that adding the structural object class

without values of an auxiliary object class is not permitted.

permittedNewSubordinates

For each entry, this attribute lists the name forms for entries that can be created as

subordinates to the entry. If the access controls permit no subordinates, an empty list

is provided. If the DSA cannot determine a suitable list, the attribute is not returned.

PermittedNewSubordinates ::= SEQUENCE OF NAME-FORM.&id

permittedNewSubordinates ATTRIBUTE ::= {

 WITH SYNTAX PermittedNewSubordinates

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID id-adacel-oa-permittedNewSubordinates

}

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 121

permittedImports

For each entry, this attribute lists the name forms for existing entries that the user can

move within the DIT to become subordinate to the entry. If the access controls permit

no subordinates, an empty list is provided. If the DSA cannot determine a suitable list,

the attribute is not returned.

PermittedImports ::= SEQUENCE OF NAME-FORM.&id

permittedImports ATTRIBUTE ::= {

 WITH SYNTAX PermittedImports

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID id-adacel-oa-permittedImports

}

Other operational attributes

ViewDS has a number of ViewDS-specific user and operational attributes which are

used by Access Presence in special ways:

• sortSubs

• hierarchyName

• unabbreviatedHierarchyName

• updatersName

• viewDSMatchQuality and viewDSSimpleMatchQuality

• viewDSSessionObject

Finally, the following operational attributes are not used directly by Access Presence,

but are used by the DSA to generate information used by Access Presence:

• hierarchyNameSpecification

• resolvedDistinguishedName

sortSubs

sortSubs is a simple text string used by Access Presence as a sort-key when listing

subordinates of a given object class. It allows designated people or units to appear

ahead of their natural sort position (typically alphabetical-by-name).

It is a user attribute that must be defined in the schema to appear in entries. The DUA

will request the attribute if it is defined in the schema.

It should not normally be included in attributePresentation.

sortSubs ATTRIBUTE ::= {

 WITH SYNTAX PrintableString

 EQUALITY MATCHING RULE caseExactMatch

 ORDERING MATCHING RULE caseExactOrderingMatch

 SUBSTRINGS MATCHING RULE caseExactSubstringsMatch

 SINGLE VALUE TRUE

 ID {vf 4 0}

}

Technical Reference Guide: User Interfaces Version 7.5.1

122 Chapter 6: Server-side attributes

hierarchyName

This operational attribute is a text string that holds an abbreviated representation of an

entry’s superior units.

The DSA constructs the value from the entry’s DN, and according to the specification

in the hierarchyNameSpecification attribute that is in the subschema

administrative area containing the entry.

The hierarchyName attribute is displayed on a Search Form wherever the forms

component defines that an organizationalUnitName attribute should be

displayed. If the entry can have subordinates, the DUA replaces the second

component with the RDN of the entry itself. Both RDNs are abbreviated.

hierarchyName ATTRIBUTE ::= {

 SUBTYPE OF name

 WITH SYNTAX DirectoryString { ub-name }

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 ID {vf 4 1}

}

hierarchyNameSpecification

This operational attribute can be used to control the components of a DN which

construct the attributes hierarchyName and unabbreviatedHierarchyName.

The hierarchyNameSpecification should be defined in a subschema subentry.

hierarchyNameSpecification ATTRIBUTE ::= {

 WITH SYNTAX HierarchyNameSpecification

 EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

 USAGE dSAOperation

 ID { ads 18 2 }

}

HierarchyNameSpecification ::= SEQUENCE {

 structuralObjectClass OBJECT-CLASS.&id,

 delimiter DirectoryString{ub-name}

 DEFAULT UTF8String:";",

 topBound [0] HierarchyNameSelection OPTIONAL,

 bottomBound [1] HierarchyNameSelection OPTIONAL,

 specification SEQUENCE OF HierarchyNameComponent

}

HierarchyNameComponent ::= SEQUENCE {

 selection HierarchyNameSelection,

 preferredAVA SEQUENCE OF ATTRIBUTE.&id OPTIONAL

}

HierarchyNameSelection ::= CHOICE {

 top [0] INTEGER,

 autonomous [1] INTEGER,

 bottom [2] INTEGER }

The hierarchyNameSpecification is a multi-valued attribute, where each value

defines the rules for building hierarchyName and unabbreviatedHierarchy

Name for a particular structural object class.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 123

The exception is a value of hierarchyNameSpecification defined for the object

class top. This value of hierarchyNameSpecification is the default rule used if

a specific rule is not defined for a structural object class. The structuralObjectClass

field identifies which object class the hierarchyNameSpecification value applies to.

The delimiter field identifies a character sequence to be used to separate

components in the value of hierarchyName or unabbreviatedHierarchyName.

The default is semi-colon character.

The specification field is a sequence of structures that define specific RDNs in

the DN to include in the constructed attribute. Each RDN is referenced by a positive

numeric index relative to one of three reference points.

The reference points are:

• top – the first RDN of the DN under the root entry. The offset from this point

indexes towards the end of the DN. Thus, the reference top:0 indicates the first

RDN under the root entry.

• bottom – the last RDN of the DN. The offset from this point indexes towards the

start of the DN. Thus, the reference bottom:1 indicates the second last RDN in

the DN.

• autonomous – this reference point is relative to the RDN of the autonomous

administrative point which applies to the entry being evaluated. For example, in the

demonstration database Deltawing, the O "Deltawing" entry is an autonomous

point. The hierarchyNameSpecification defined for the O "Deltawing"

subschema area uses the O "Deltawing" entry as the point for evaluating the

autonomous references, regardless of any superior entry in the DIT. The offsets

relative to the autonomous point index towards the end of the DN.

The preferredAVA field in each specification structure is optional. It indicates

the preferred attribute type to use in the constructed value when a selected RDN has

more than one AttributeTypeAndValue in the RDN. The first attribute type in the

list which corresponds to a type occurring in the RDN is selected. If none match, or

the preferredAVA field is not specified, the first attribute in the RDN is selected.

The topBound and bottomBound provide limits on the RDN components selected. If

a component selected by the specification field:

• is above the topBound or below the bottomBound, it is not used in the

constructed value.

• matches the topBound or bottomBound, or is between the two bounds, it is used

in the constructed value.

If hierarchyNameSpecification is not provided in a subschema administrative

area, the default behaviour for constructing hierarchyName and unabbreviated

HierarchyName matches the following hierarchyNameSpecification

specification.

{

 structuralObjectClass top,

 topBound autonomous:0,

 bottomBound bottom:1,

 specification {

 {

 selection autonomous:1

 },

 {

Technical Reference Guide: User Interfaces Version 7.5.1

124 Chapter 6: Server-side attributes

 selection bottom:1

 }

 }

},

{

 structuralObjectClass organizationalUnit,

 topBound autonomous:0,

 bottomBound bottom:0,

 specification {

 {

 selection autonomous:1

 },

 {

 selection bottom:0,

 preferredAVA {

 organizationalUnitName

 }

 }

 }

}

updatersName

This operational attribute a text string derived from the RDN of the user who most

recently modified a directory entry. As it is not automatically maintained by the DUA or

DSA, the modifiersName attribute should be used in its place.

updatersName ATTRIBUTE ::= {

 SUBTYPE OF name

 WITH SYNTAX DirectoryString { ub-name }

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE directoryOperation

 ID {vf 18 1}

}

viewDSMatchQuality and viewDSSimpleMatchQuality

These attributes allow search results to be sorted according to how well they match a

DUA’s search filter. They have the following schema definitions:

viewDSMatchQuality ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 ORDERING MATCHING RULE integerOrderingMatch

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID { 1 3 6 1 4 1 21473 5 18 11 } }

viewDSSimpleMatchQuality ATTRIBUTE ::= {

 WITH SYNTAX INTEGER

 EQUALITY MATCHING RULE integerMatch

 ORDERING MATCHING RULE integerOrderingMatch

 SINGLE VALUE TRUE

 USAGE directoryOperation

 ID { 1 3 6 1 4 1 21473 5 18 12 } }

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 6: Server-side attributes 125

Each entry in a search result has a value for viewDSMatchQuality and

viewDSSimpleMatchQuality. They can be requested by a DUA so that it can sort

the results itself; or be referenced by a DUA through a sort control so that the DSA

can sort the results.

If an entry matches the search filter exactly, then:

• viewDSSimpleMatchQuality equals 0

• viewDSMatchQuality equals 0

If an entry matches the search filter approximately, then:

• viewDSSimpleMatchQuality equals 1

• viewDSMatchQuality is greater than 0 – the higher the value, the less well the

entry matches the search filter.

Typically, a DUA issues a sort control that requests sorting on

viewDSSimpleMatchQuality first and then on the second search attribute (for

example, surname). This would group the exact matches at the start of the results,

followed by the approximate matches in alphabetical order.

viewDSSessionObject

This operational attribute stores session objects in the directory. It is automatically

indexed for its equality matching rule and dn-tracking is enabled for it. This attribute

should be included in the attributes replicated to another DSA if Access Presence

traffic is load-balanced across a master and its replicas. The VMA will include it in the

default set of attributes it offers when creating a new replication agreement.

The viewDSSessionObject operational attribute has the following schema

definition:

viewDSSessionObject AttributeTypeDescription ::= {

 identifier { 1 3 6 1 4 1 21473 5 18 20 },

 name { printableString:"viewDSSessionObject" },

 information {

 equalityMatch directoryStringFirstComponentMatch,

 attributeSyntax printableString:"SessionObject",

 multi-valued TRUE,

 application directoryOperation

 }

}

SessionObject ::= SEQUENCE {

 identifier PrintableString,

 -- Recommend use of a UUID in string representation

 created INTEGER,

 -- Unix style seconds since 1970-01-01T00:00:00

 subject DistinguishedName,

 -- Authenticated identity for this session

 remote UTF8String OPTIONAL

 -- Proxy authorisation remote user identifier

}

Technical Reference Guide: User Interfaces Version 7.5.1

126 Chapter 6: Server-side attributes

unabbreviatedHierarchyName

This operational attribute is a text string that holds a representation of an entry’s

superior units.

The DSA constructs the value from the entry’s DN, and according to the specification

in the hierarchyNameSpecification attribute that is in the subschema

administrative area containing the entry.

The unabbreviatedHierarchyName attribute is displayed on a Search Form

wherever:

• the forms component defines that an organizationalUnitName attribute

should be displayed; and

• the hierarchyNameBehaviour component is set to unabbreviated.

If the entry can have subordinates, the DUA replaces the second component with the

RDN of the entry itself. Both RDNs are abbreviated.

unabbreviatedHierarchyName ATTRIBUTE ::= {

 SUBTYPE OF name

 WITH SYNTAX DirectoryString { ub-name }

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 ID {ads 4 0}

}

resolvedDistinguishedName

This is an integer corresponding to the internal ‘entry identifier’ used to tag every entry

in the DSA. It is used in constructing an alias name of an entry which is much shorter

than the entry’s full Distinguished Name. A ViewDS DSA will return such an alias

name if the DUA requests the attribute resolvedDistinguishedName in a search

request, typically to reduce the amount of data transmitted in search results when

operating over a slow network.

The attribute is predefined in the schema and is not user modifiable. It does not exist

in any entry; it is used only as a signal to the DSA to return such short alias names

and in constructing such alias names.

If this attribute is requested, then the DUA should also request the dontUseCopy

service control for correct operation in the presence of replicated data.

resolvedDistinguishedName ATTRIBUTE ::= {

 WITH SYNTAX ResolvedDistinguishedName

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 NO USER MODIFICATION TRUE

 USAGE dSAOperation

 ID {vf 18 0}

}

ResolvedDistinguishedName ::= INTEGER

 127

Chapter 7

Printing DUA

The Printing DUA allows data to be extracted from a directory and formatted into

reports, printed directories and formats suitable for other systems. The input to the

Printing DUA is an input script – which can be selected by an Access Presence user

to generate a report – and its output can be written to a file and displayed by Access

Presence.

This chapter has the following sections:

• Running the Printing DUA

• Input script syntax

• Supported attribute syntaxes

Running the Printing DUA

The Printing DUA can be invoked from Access Presence (see Configuring for printing

on page 27) or from the command line as follows:

pdua [-t vfhome] [-a | -u username -p password]

[-b baseobject] [-r requestor] [-o address]

[-e errorfile] [-f outputfile] [inputfile]

The command-line options are as follows:

-t vfhome Sets the ViewDS root directory to vfhome instead of the

environment variable ${VFHOME}.

-a Authenticates with the server using anonymous credentials.

-u username Provides a username with which to authenticate with the DSA.

The username is either the value of a viewDSUserName

attribute or a DN in Stream DUA notation enclosed in curly

brackets. (For information about Stream DUA notation, see the

Technical Reference Guide: Directory System Agent.)

-p password Provides a password with which to authenticate with the DSA.

-b baseobject Sets the base object to be the starting point in the DIT from which

the Printing DUA will generate a report.

This option overrides the base-object option (see base on

page 129) in the input script.

Technical Reference Guide: User Interfaces Version 7.5.1

128 Chapter 7: Printing DUA

-r requestor Enable proxy authorisation for each request sent to the DSA,
using requestor as the identity that should be used to evaluate

access controls.

-e errorfile Sets the name of the file to which the Printing DUA writes error

messages.

-f filename Sets the name of the file for all normal output from the

Printing DUA. When this option is unspecified, the Printing DUA

writes output to the command line (stdout).

-o address Connect to address instead of the address declared by the

configuration-file parameter dsaAccessPoint or dsaAddress.

inputfile The Printing DUA reads the input file containing a script. The

script declares the entries and attributes to be extracted from the

DSA, and the sorting parameters and the tags, text, and

formatting to be inserted.

By convention, the input file has a name ending in the suffix ds;

the output is directed to a file with the suffix do; and stderr if

redirected goes to a file with suffix er.

Input script syntax

The input to the Printing DUA is a script specifying the content to be produced. The

script consists of a list of parameters, some optional, some mandatory, that must be

given in a fixed order. Each parameter begins on a new line and consists of a

keyword, followed by a colon, a parameter argument, and a semi-colon.

The input language has the same extended Backus-Naur Form notation as the

Stream DUA (see the Technical Reference Guide: Directory System Agent):

| separates alternative expressions

() groups the enclosed expressions

{} means zero or more repetitions of the enclosed expression

[] means the enclosed expression is optional

These symbols are underlined if they form part of the syntax itself; the name of a

production is shown in italic text; and literal text (e.g. a keyword) is shown in the font

Courier New.

Script parameters

An input script consists of the following three groups of parameters in the order

shown. Any text following the character # is a comment.

Entry extraction parameters

base: name;

include_base: (yes | no);

[depth: number;]

[exclude_subtrees: filter;]

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 7: Printing DUA 129

[select_filter: filter;]

extract_type: (matching | subtree);

preserve_hierarchy: (yes | no);

Entry ordering parameters

[class_order: objectclass {, objectclass };]

[entry_sort: class_sort { class_sort };]

Data output parameters

[file_start: string;]

entry_output: objectclassoutput { objectclassoutput };

[file_end: string;]

[data_formats: format { format };]

Entry extraction parameters

The entry extraction parameters specify the region of the DIT (a subtree) from where

data is to be extracted.

base

The mandatory parameter base specifies the name of the base entry of a subtree. It

corresponds to the X.500 Search operation parameter baseObject.

base: name;

Where name is the full DN of an entry.

For example:

base :

 organizationName "Deltawing"

 / organizationalUnitName "Research Laboratories"

 ;

include_base

The mandatory parameter include_base indicates whether the base entry should

be included in the extraction.

include_base: (yes | no);

For example:

include_base : yes;

depth

The optional parameter depth specifies the lower limit of the subtree. If it is

unspecified there is no depth limit. A value of zero indicates the base entry.

depth: number;

The limit is specified as a ‘distance’ from the base of the subtree. The distance

between the base entry and an entry subordinate to it is defined as the number of

extra RDN terms in the DN of the latter. The subtree consists of the base entry and all

of its subordinates which lie within the distance specified (including those which lie at

the limit).

For example:

depth : 3;

Technical Reference Guide: User Interfaces Version 7.5.1

130 Chapter 7: Printing DUA

exclude_subtrees

The optional parameter exclude_subtrees reduces the DIT subtree region defined

by base, include_base and depth by specifying subtrees to be excluded.

exclude_subtrees: filter;

where filter is in the form of an X.500 filter or an LDAP string representation of a

filter enclosed in double quotes. Any entry matching the filter together with all of its

subordinates will be excluded from the DIT region from which the data is to be

extracted.

For example:

exclude_subtrees:

 not (objectClass = organizationalUnit or objectClass =

 organizationalPerson);

The parameters select_filter, extract_type and preserve_hierarchy

specify the entries to be extracted and whether the hierarchical relationships between

them are to be preserved.

select_filter

The optional parameter select_filter specifies a selection filter that helps define

the set of entries to be extracted. If it is missing an empty filter is assumed. The

parameter corresponds to an X.500 search filter or an LDAP string representation of a

filter enclosed in double quotes. Together with extract_type, it specifies the criteria

by which entries are selected for extraction.

select_filter: filter;

For example:

select_filter : objectClass = organizationalUnit;

extract_type

The mandatory parameter extract_type specifies how a select_filter is to be

interpreted.

extract_type: (matching | subtree);

Where:

• matching – the Printing DUA only extracts the entries within the search region

satisfying the filter.

• subtree – the Printing DUA extracts all entries within the search region satisfying

the filter along with all entries between an entry satisfying the filter and the base

entry. A value of subtree is not allowed if the hierarchy is not to be preserved –

that is, preserve_hierarchy is no.

For example: extract_type : subtree;

preserve_hierarchy

The mandatory parameter preserve_hierarchy specifies whether the hierarchical

relationships between the extracted entries are to be preserved.

preserve_hierarchy: (yes | no);

If set to no, the extracted entries are treated as a set of unrelated entries.

For example: preserve_hierarchy : yes;

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 7: Printing DUA 131

Entry ordering parameters

If the entry-extraction parameter preserve_hierarchy is set to yes, the entries are

extracted in preorder. An order may be specified for each set of entries with the

same parent in the tree formed by the base entry and the extracted entries.

If the entry-extraction parameter preserve_hierarchy is set to no, the extracted

entries are treated as a set of unrelated entries and an ordering may be specified. The

following parameters specify ordering.

class_order

The optional parameter class_order specifies the order of the object classes of the

extracted entries. If the hierarchy is preserved (i.e. preserve_hierarchy) is yes,

then sorting by object class occurs for each set of entries which have the same parent

in the tree formed by the base entry and the extracted entries. If no class order is

specified then sorting by object class does not occur. Its argument is a list of object

class names.

class_order: objectclass {, objectclass };

For example:

class_order : organizationalPerson, organizationalUnit;

entry_sort

The optional parameter entry_sort specifies the sorting criteria for the extracted

entries. If class_order was specified then this specifies the order of the entries

within each object class. If the hierarchy is preserved (i.e. preserve_hierarchy) is

yes, then sorting occurs for each set of entries which have the same parent in the tree

formed by the base entry and the extracted entries.

The parameter is specified as a list of attribute type information for each object class.

The first attribute type is the primary sort key, the second the secondary, etc.

entry_sort: class_sort { class_sort };

class_sort is a specification of the sorting criteria for a particular object class. It

has the form:

class_sort ::= [objectclass : fieldspec {, fieldspec }] ;

fieldspec is used to specify the attribute types to sort on. This may be an attribute

in the current entry represented by type, or it may be an attribute in another entry

referred to by a DistinguishedName value stored in an attribute in the current entry.

This is represented by type.type where the first type must be an attribute in the

current entry with a syntax of DistinguishedName and the second type is an

attribute in the referenced entry.

fieldspec ::= type | type . type ;

Where an attribute used as a sort key has multiple values then only the first value

retrieved is used for the sort. Attributes of a particular type are sorted in ascending

order according to the ordering rule for that type.

For example:

entry_sort :

 [organizationalPerson : sortSubs, surname, givenName]

 [organizationalRole : sortSubs, roleOccupant.surname,

 roleOccupant.givenName] ;

Technical Reference Guide: User Interfaces Version 7.5.1

132 Chapter 7: Printing DUA

Data output parameters

These parameters specify the data to be extracted from the selected entries and how

this data should be outputted.

file_start

The optional parameter file_start specifies the text string to be placed at the

beginning of the file.

file_start: string;

For example:

file_start : "Current list of units\n\n";

entry_output

The mandatory parameter entry_output specifies the data to be output and the

way in which it is to be written. Each object class to be output must be represented by

an output specification which describes how an entry belonging to the object class is

to be output. The syntax is

entry_output: objectclassoutput { objectclassoutput } ;

objectclassoutput ::= [objectclass [+] :

entrystart , { { datastart , datatype , dataend }} ,

entryend]

datatype ::= typespec [+] [(number)] |

typespec [+] [([rdnSelect ,] number)]

| subordinate | path

The items subordinate and path are described on page 135.

typespec ::= type [. componentspec] |

type . type [. componentspec]

componentspec ::= component { . component }

typespec is used to identify the attribute type to display. This may be an attribute in

the current entry or it may be an attribute in an entry referenced by a

DistinguishedName value in an attribute of the current entry. For example, to

display the surname attribute of the entry pointed to by the roleOccupant attribute

of an organizationalRole object class, the following objectclassoutput could

be used:

[organizationalRole: "", roleOccupant.surname, ""]

componentspec is an optional extra information which may be used to extract fields

from complex attribute syntaxes. e.g. to print out the telephoneNumber field in a

facsimileTelephoneNumber, the following typespec could be used:

facsimileTelephoneNumber.telephoneNumber

The component may be used to access a named field in structure (as above), or it

may be a number providing an index into a SEQUENCE OF or SET OF list where the

first element in the list has an index of 1. Using an index value of zero will cause the

number of elements in the list to be output. Using a negative index will reference

elements from the end of the list – for example, -1 will reference the last element in

the list.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 7: Printing DUA 133

entrystart, datastart, dataend and entryend are each defined as string.

Each of these must be present even if empty. If the # character occurs in one of the

strings, it is replaced with a number corresponding to the depth of the entry i.e. the

distance between the entry and the base entry. This special meaning can be

overridden by preceding the # with the escape character \.

If datastart or dataend begins with a *, the * is not output but indicates that the

remainder of the string should be output even if the associated attribute is not present

in the entry.

There are two ways to output attributes with multiple values: either only the ‘first’ value

is output or else all the values are output. The output of multi-valued attributes is

controlled by the following:

• if a + is appended to the object class name then all values of the listed attributes

will be output,

• if a + is appended to the name of an attribute then all the values of that attribute will

be output,

• if an attribute is specified more than once for a particular object class then all the

values of that attribute will be output,

• if none of the above apply for a particular attribute then only the ‘first’ value will

be output.

An attribute may be specified more than once for a particular object class to cater for

the attribute having more than one value. Where an attribute is specified more than

once, all the specifications must be contiguous. If an attribute to be output has two

values then the second value may be output in a different way to the first value by a

second output specification for the attribute. If a second specification is not present

then the second occurrence of the value is output in the same way as the first. In

general, if an attribute to be output has n values then the kth value, where 1 < k = n, is

output as specified in the kth occurrence of the attribute in the output statement, or if

such a statement is not present, it is output as specified in the last occurrence of the

attribute in the output statement.

If an attribute to be output has attribute syntax of either BOOLEAN or

DistinguishedName then it may be accompanied by a set of arguments which

control the presentation of the value(s). These arguments are described later in the

chapter.

For example:

entry_output :

 [organizationalUnit : "*# ",

 {"", organizationalUnitName, ""}

 {"\nMgr: ", manager, ""}

 , "\n\n"]

 ;

file_end

The optional parameter file_end specifies the text strings to be placed at the end of

the file.

file_end: string;

Technical Reference Guide: User Interfaces Version 7.5.1

134 Chapter 7: Printing DUA

data_formats

The optional parameter data_formats contains a list of formatting instructions for

attributes with attribute syntax BOOLEAN, attributes with attribute syntax

DistinguishedName and for path information. The syntax is

data_formats: format { format };

format ::= formatBool | formatDN | formatSubordinate

Each format item in the list contains a complete formatting instruction.

A formatBool item is a formatting instruction for attributes with attribute syntax

BOOLEAN.

A formatDN item is a formatting instruction for attributes with attribute syntax

DistinguishedName and for path information. A formatSubordinate item is a

formatting instruction for subordinate object classes. The first argument in each

formatting instruction is the reference number of the item. This is the value used in the

entry_output parameter to refer to a particular format.

formatBool

The syntax for formatBool is

[number : TRUEstring , FALSEstring]

The items TRUEstring and FALSEstring are each a string.

TRUEstring specifies the string to be output if the value is TRUE; FALSEstring

specifies the string to be output if the value is FALSE. If a BOOLEAN value is to be

output and no formatting instruction is given, these values default to “Y” and “N”

respectively.

formatDN

The syntax for formatDN is

[number : [compress ,] [reverse ,]

sepRDN , startRDN , endRDN, sepAVA [, sepTV]]

The items sepRDN, startRDN, endRDN, sepAVA and sepTV are each a string.

The second argument indicates whether the extracted information should be

abbreviated. If compress is specified then the information will be abbreviated;

otherwise, it will be output normally. Only values of type organizationalUnitName

may be abbreviated.

startRDN indicates whether the extracted RDNs are to be output in normal order

(with the first RDN being the closest to the root) or in reverse order (with the first RDN

being furthest from the root). If reverse is specified then the RDNs are output in

reverse order; otherwise they are output in normal order.

sepRDN specifies a text string to separate the RDNs. In the case where an RDN has

more than one AVA, startRDN specifies a text string to be placed on the left hand

side of the RDN, endRDN a text string to be placed on the right hand side, and

sepAVA a text string to separate the AVAs. The final argument sepTV specifies a text

string to separate the type and value strings in each AVA. This last argument is

optional - if it is omitted then only the attribute value of each AVA will be output. If a

DN or path value is to be output and no formatting instruction is given, these values

default to “, ”, “(”, “)”, “, ” and “=” respectively.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 7: Printing DUA 135

The syntax for formatSubordinate is:

formatSubordinate ::= [number : formatSubClass { ,

formatSubClass }]

formatSubClass ::= { object_class : start_string , end_string }

The start_string is printed before the first subordinate with object class

object_class of the current entry and the end_string is printed after the last

subordinate with the object class object_class of the current entry. The

start_string and end_string are only printed if the current entry has at least

one subordinate of the defined object class. A formatSubordinate data format is

only used in conjunction with a %subordinates typespec.

For example:

data_formats : [1: " | ", "", "", ""]

 [2: "YES", "NO"] ;

 [3: { organizationalUnit: "<UNIT>", "</UNIT>" },

 { organizationalRole: "<ROLE>", "</ROLE>" }]

Subordinates

The %subordinates ‘pseudo-attribute’ may be used as a place holder to indicate

where the current entries' subordinate information should be printed relative to the

attribute information of the entry. If not present, the subordinate information is printed

after the entryend string of the entry.

The %subordinates directive may have an optional format identifier which may be

used to reference a data_format which may be used to specify extra formatting

information for each subordinate object class.

subordinates ::= %subordinates [(number)]

Path data

In addition to attribute information, information from an entry’s Distinguished Name

may also be output. This is accomplished by the definition of the “pseudo-attribute”

%path. %path represents the Distinguished Name of the entry being written to output.

It permits the entry’s Distinguished Name to be treated as if it were an attribute.

%path may be specified any number of times for a particular object class in the

entry_output parameter. Unlike the case for ordinary attributes, multiple instances

do not have to be contiguous. Also there is no special meaning attached to the

instances after the first one; each instance is processed individually.

Distinguished Name output

The output of distinguished names (i.e. attributes which have attribute syntax of

DistinguishedName and of path information) is controlled by a pair of optional

arguments.

An attribute that has the attribute syntax of DistinguishedName is specified as

follows in the entry_output parameter:

type [+] [([rdnSelect ,] number)]

Path information is specified as follows in the entry_output parameter:

%path [([rdnSelect ,] number)]

Technical Reference Guide: User Interfaces Version 7.5.1

136 Chapter 7: Printing DUA

The first argument, rdnSelect indicates the RDNs to be extracted. It has the form:

rdnSelect ::= all | selector | selector selector [([-]

number)]

selector ::= number | $ [- number] | @ [+ number]

A value all indicates that all the RDNs in the distinguished name are to be extracted.

A value k where k is an integer indicates that the kth RDN is to be extracted, where 1

<= k <= (the number of RDNs in the distinguished name). A value of ‘$’ indicates the

last RDN while a value of "$ - k" where 1 <= k <= (the number of RDNs in the

distinguished name - 1) indicates the RDN at distance k from the last RDN. If the entry

represented by the distinguished name being processed is a subordinate of the base

entry then a value of "@" indicates the RDN of the base entry while a value of "@ + k"

where 1 <= k <= (the number of RDNs in the distinguished name - the number of

RDNs in the distinguished name of the base entry) indicates the RDN at distance k

beyond the RDN of the base entry.

If two selectors are entered as the value then they specify a subset of the

distinguished name. If the distinguished name is considered as a sequence of RDNs

with the first RDN being the one closest to the DIT root, then the subset is the

contiguous subsequence of RDNs starting at the RDN represented by the first selector

and ending at the RDN represented by the second i.e. the selectors define the end

points of the subsequence. If for an entry the RDN representing the first selector is

further from the DIT root than the RDN representing the second then the subsequence

is null. If the selectors in rdnSelect are not accompanied by a number in parentheses

than the subsequence defined by them is extracted. Otherwise, a maximum of number

RDNs are extracted where number is a non-zero positive integer. If number is not

preceded by a minus sign then only the first number RDNs of the subsequence are

extracted (if there are less than number RDNs in the subsequence then they are all

extracted). If number is preceded by a minus sign then only the last number RDNs of

the subsequence are extracted.

If the entry represented by the distinguished name being processed is not a

subordinate of the base entry and a selector of either “@” or “@+k” has been

specified, then the following action is taken:

• The entire rdnSelect argument is ignored i.e. all the RDNs in the distinguished

name are extracted;

• A warning message is placed in the error file.

The message is:

WARNING - attribute xx for following entry has distinguished

name value outside of selected range: dd

where xx is the name of the attribute which possesses the distinguished name value

and dd is the Distinguished Name of the entry which has the attribute.

NOTE: The above condition can only arise in the processing of an attribute which has

attribute syntax of DistinguishedName. It cannot arise in the processing of %path.

If the value of rdnSelect is a single selector which is not in the allowable range then no

data is extracted.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 7: Printing DUA 137

If two selectors are specified and one or both of the selectors are outside the

allowable range then:

• If the second selector is k where k > (the number of RDNs in the distinguished

name) or is @ + k where k > (the number of RDNs in the distinguished name – the

number of RDNs in the distinguished name of the base entry) then it is processed

as if it were "$". If the first selector has this property then no RDNs are extracted.

• If the first selector is "$ - k" where k > (the number of RDNs in the distinguished

name - 1) then it is processed as if it were "1". If the second selector has this

property then no RDNs are extracted.

The second argument controlling the output of a distinguished name is a number

indicating which formatting statement in data_formats is to be used for formatting

the extracted data. This argument must be present.

The first argument, rdnSelect is optional. If it is not provided then the entire

distinguished name is extracted. If both arguments are omitted, the entire

distinguished name is output using the default formatting.

For example:

%path(@+1 $-1 (2), 1)

Parameter-value definitions

string

A string is any sequence of characters enclosed in matching single or double

quotation marks. The opening and closing quotes of the string must be on the same

line. If the string contains a quote of the same type as the enclosing quotes then the

embedded quote must be escaped by duplicating it in the string. For example, the

string value O'Hara could be quoted as 'O''Hara' (the ‘‘ is two single quotes) or

"O'Hara".

Note that text strings specified in the script may contain non-printable characters as

well as printable ones. Non-printable characters are represented using a backslash

followed by either a special character or a three-digit octal code for the character. The

supported special characters are \n (linefeed), \t (tab), \\ (backslash), \' (single

quote), and \" (double quote).

number

A number is a sequence of digits.

objectclass

An objectclass is the name of an object class (either X.500 or View500 built-in, or

a user-defined name specified via an objectClasses operational attribute), or an object

identifier. An object identifier may be optionally preceded by the keyword class.

For example:

organizationalUnit

deltawingOrgPerson

{1 3 32 0 1 6 23}

Technical Reference Guide: User Interfaces Version 7.5.1

138 Chapter 7: Printing DUA

Supported attribute syntaxes

The Printing DUA converts attributes with a complex syntax into simple text strings. It

supports the following subset of the attribute syntaxes supported by the DSA:

BOOLEAN

DirectoryString

DistinguishedName

FacsimileTelephoneNumber

GeneralizedTime

INTEGER

NumericString

ORAddress

ORName

PostalAddress

PrintableString

TeletexString

TelexNumber

UTCTime

 139

Chapter 8

 Printing DUA scripts

ViewDS includes several scripts for extracting information from the demonstration

directory, Deltawing. These scripts can be adapted for any other directory and serve

as a starting point for developing new scripts.

Scripts

The following are supplied scripts:

phonelist.ds Simple phone list for an organizational unit giving name, unit

and phone number for all staff in the unit.

unitlist.ds List of organizational units, with address, phone and fax

number.

executivelist.ds List of all persons whose job title begins with ‘A/C Executive’

with name, phone and job title.

mailinglist.ds List of all persons whose mailing address does not include the

word ‘Australia’, with name, title and mailing address.

staffdetails.ds List of all persons with most of their attributes, and all fields

tagged (for importing into a desktop publishing package).

phonelist.ds

This script produces a simple phone list giving the name, unit and phone number for

each person in an organizational unit.

Input script

This script produces a phone list. The name, and phone number

of each person are given as well as the units they belong to.

base :

 organizationName "Deltawing"

 / organizationalUnitName "Deltawing Information Systems

Ltd."

 / organizationalUnitName "Home Media Division"

 ;

Technical Reference Guide: User Interfaces Version 7.5.1

140 Chapter 8: Printing DUA scripts

This parameter has no role in this case. Setting is

arbitrary.

include_base : no ;

Select all people

select_filter :

 objectClass = organizationalPerson ;

Extract only entries matching filter

extract_type : matching ;

Don't preserve hierarchical relationships between extracted

entries

preserve_hierarchy : no ;

Sort by Surname, Given name, Telephone number

entry_sort :

 [organizationalPerson : surname, givenName,

telephoneNumber]

 ;

Header on output file

file_start : "Phone List\n\n" ;

Data output

entry_output :

Output instructions for each person

 [organizationalPerson : "",

Surname

 { "", surname, ""}

Comma then space then given name then tab

 { ", ", givenName, *"\t"}

Two units immediately after "base", then tab

 { "", %path(@+1 $-1 (2), 1), *"\t"}

All telephone numbers - separated by comma space

 { "", telephoneNumber, ""}

 { ", ", telephoneNumber, ""}

Terminate line

 , "\n"]

 ;

Output format of the two superior units selected above

data_formats :

Compress the names of the units and separate them with comma

 [1: compress, ",", "", "", ""]

 ;

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 8: Printing DUA scripts 141

Sample output of phonelist.ds

...

Briggs, Robert HomeEd (03) 9335 7132

Brkic, John HomeEd,MarkRes (03) 9335 3145

Bruce, Martina WWWS,StratRelat (03) 9335 4647

Budgen, Ronald HomeEd,MarkRes (03) 9335 3131

Campbell, Rodney HomeEd,MarkRes (03) 9335 8968

Cassio, Suzy HomeEd,MarkRes (03) 9335 8882

Chan, Tim HomeEd,MarkRes (03) 9335 8356

Cheep, Carol WWWS,WebDev (03) 9335 4224

Clifford, Robert HomeEd,MarkRes (03) 9335 3167

Colenutt, Gary HomeEd,MarkRes (03) 9335 3177

Corbet, Meredith WWWS (03) 9335 4526

Crompton, Peter HomeEd,MarkRes (03) 9335 1435

Crowhurst, Derek HomeEd,MarkRes (03) 9335 3967

Cullen, Greg HomeEd,MarkRes (03) 9335 6780

Dang, Em HomeEd,MarkRes (03) 9335 8720

...

unitlist.ds

This script produces a list of units in hierarchical order together with the location and

telephone and fax numbers for each unit.

Input script

This script produces a list of units in hierarchical order.

The location, telephone number and facsimile telephone

number of each unit are also output.

Specify base unit

base :

 organizationName "Deltawing"

 / organizationalUnitName "Deltawing Automotive Ltd."

 / organizationalUnitName "Avalon Factory"

 ;

Include base unit in search

include_base : yes;

Select all units

select_filter : objectClass = organizationalUnit;

Extract entries satisfying above filter together with the

units

they belong to

Technical Reference Guide: User Interfaces Version 7.5.1

142 Chapter 8: Printing DUA scripts

extract_type : subtree;

list units in hierarchical order

preserve_hierarchy : yes;

Units with the same parent are to be sorted in the same way

as in

the on-line system

entry_sort :

 [organizationalUnit : SortSubs, OrganizationalUnitName]

 ;

Header on output file

file_start : "Current list of units\n\n";

Data output

entry_output :

Output instructions for each unit ...

Asterisk followed by "level" of unit followed by space

 [organizationalUnit : "*# ",

Unit name

 {"", organizationalUnitName, ""}

Linebreak followed by label followed by location

 {"\nAdd: ", location, ""}

Linebreak followed by label followed by telephone number

 {"\nTel: ", telephoneNumber, ""}

Linebreak followed by label followed by facsimile telephone

number

 {"\nFax: ", facsimileTelephoneNumber, ""}

Terminate the current line and follow with a blank line

 , "\n\n"]

 ;

Sample output of unitlist.ds

...

*1 Human Resources Group

Add: 74 Deltawing Road One, Lara, Victoria, 3212

Tel: (052) 35 5882

Fax: (052) 35 6121

*1 Production

Add: 74 Deltawing Road One, Lara, Victoria, 3212

Tel: (052) 35 6119

Fax: (052) 35 2178

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 8: Printing DUA scripts 143

*2 Operations

Add: 74 Deltawing Road One, Lara, Victoria, 3122

Tel: (052) 35 6934

Fax: (052) 35 2178

*3 Operations Support

Add: 74 Deltawing Road One, Lara, Victoria, 3122

Tel: (052) 35 4541

Fax: (052) 35 4593

...

executivelist.ds

This script produces a list of all persons whose job title begins with ‘A/C Executive’

with name, phone and job title.

Input Script

This script produces a list of A/C Executives.

base :

 organizationName "Deltawing"

 ;

This parameter has no role in this case. Setting is

arbitrary.

include_base : no ;

Select all people with title "A/C Executive"

select_filter :

 objectClass = organizationalPerson and title ~ "A/C

Executive"

 ;

Extract only entries matching filter

extract_type : matching ;

No hierarchical relationships between extracted entries

preserve_hierarchy : no ;

Sort by telephone number, surname then given name

entry_sort :

 [organizationalPerson : telephoneNumber, surname,

givenName]

 ;

Header on output file

file_start : "List of A/C Executives\n" ;

Technical Reference Guide: User Interfaces Version 7.5.1

144 Chapter 8: Printing DUA scripts

Data output

entry_output :

Output instructions for each person ...

 [organizationalPerson : "",

Attributes separated by tabs

 { "", telephoneNumber, *"\t"}

 { "", surname, *"\t"}

 { "", givenName, *"\t"}

 { "", title, ""}

Terminate line

 , "\n"]

 ;

Sample output of executivelist.ds

...

(07) 362 8090 Bonnett Gloria A/C Executive : Far North

Queensland

(07) 362 8090 Micallef Alfred A/C Executive : Northern NSW

(09) 445 5034 Mariebel Carole Sales Executive : South

Australia

(09) 445 5055 Balmzian Noshik Sales Executive : Western

Australia

(09) 445 5071 Brown Roxanna A/C Executive : Perth Region

+1-212-667-9577 Pinto Cristino A/C Executive : North East

+1-212-667-9578 Costa Carmello A/C Executive : North West

...

mailinglist.ds

This script produces a list of all persons whose mailing address does not include the

word ‘Australia’, with name, title and mailing address.

Input script

This script produces a mailing list for the library.

base :

 organizationName "Deltawing"

 /organizationalUnitName "Deltawing Automotive Ltd."

 ;

Omit base

include_base : no ;

Select all overseas staff

select_filter:

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 8: Printing DUA scripts 145

 objectClass = organizationalPerson and

 not (mailingAddress = * "Australia" *)

 ;

Extract only entries matching filter

extract_type : matching;

Don't preserve hierarchical relationships between extracted

entries

preserve_hierarchy : no ;

Data output

entry_output :

Output instructions for each staff

Blank line

 [organizationalPerson : "\n",

Attributes in the form of label followed by space followed by

value

 { *"Name: ", givenName, *" "}

 { *"", surname, *"\n"}

 { *" ", title, *"\n"}

 { *"Post: ", mailingAddress, *"\n"}

Terminate line

 , "\n"]

 ;

Sample output of mailinglist.ds

...

Name: Carmello Costa

 A/C Executive : North West

Post: Deltawing USA Ltd, 115 Fifth Avenue, New York, NY 10003

Name: Veronica Brennan

 Sales Administration : California

Post: Deltawing USA Ltd, 115 Fifth Avenue, New York, NY 10003

Name: Marie Gander

 A/C Executive : South West

Post: Deltawing USA Ltd, 115 Fifth Avenue, New York, NY 10003

...

staffdetails.ds

This script produces a list of all persons with most of their attributes, and all fields

tagged (for importing into a desktop publishing package).

Technical Reference Guide: User Interfaces Version 7.5.1

146 Chapter 8: Printing DUA scripts

Input script

This script outputs most attributes for units and people.

base :

 organizationName "Deltawing"

 / organizationalUnitName "Deltawing Information Systems Ltd."

 / organizationalUnitName "Applications Development"

 ;

Include base

include_base : yes ;

exclude_subtrees:

Exclude entries which are not units or people and all entries

under them

 not (objectClass = organizationalUnit

 or objectClass = organizationalPerson)

 ;

Setting is arbitrary in this case as a subtree is extracted

anyway

extract_type : subtree ;

Preserve hierarchical relationships between extracted entries

preserve_hierarchy : yes ;

Where extracted entries have the same parent unit, output

people first

then units.

class_order : organizationalPerson, organizationalUnit;

entry_sort :

Units with the same parent are to be sorted in the same way

as in

the on-line system

 [organizationalUnit : sortSubs, organizationalUnitName]

People with the same parent are to be sorted in the same way

as in

the on-line system

 [organizationalPerson : sortSubs, surname, givenName]

 ;

Data output

entry_output :

Output instructions for each unit ...

Line break

 [organizationalUnit : "\n",

Tag (backslash followed by "level" of unit followed by U)

followed

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 8: Printing DUA scripts 147

by unit name

 { *"\\#U", organizationalUnitName, ""}

All attribute values output as tab followed by tag followed

by

attribute value

 { "\t\\L", location+, ""}

 { "\t\\T", telephoneNumber+, ""}

 { "\t\\F", facsimileTelephoneNumber+, ""}

 { "\t\\K", keylinkAddress+, ""}

 { "\t\\E", emailAddress+, ""}

 { "\t\\X", telexNumber+, ""}

 { "\t\\Y", teletexTerminalIdentifier+, ""}

Terminate line

 , "\n"]

Output instructions for each person ...

 [organizationalPerson : "",

Common name

 { *"\\C", commonName, ""}

All attribute values output as tab followed by tag followed

by attribute value

 { "\t\\S", surname, ""}

 { "\t\\G", givenName+, ""}

 { "\t\\L", location+, ""}

 { "\t\\T", telephoneNumber+, ""}

 { "\t\\F", facsimileTelephoneNumber+, ""}

 { "\t\\K", keylinkAddress+, ""}

 { "\t\\E", emailAddress+, ""}

 { "\t\\X", telexNumber+, ""}

 { "\t\\O", mobileNumber+, ""}

 { "\t\\P", pagerNumber+, ""}

 { "\t\\Y", teletexTerminalIdentifier+, ""}

Terminate line

 , "\n"]

 ;

Sample output of staffdetails.ds

...

\CFrank Nitzsche \SNitzsche \GFrank \L28th Floor, 74 King

Street, Melbourne, Victoria, 3000 \T(03) 9335 8654 \F(03) 9335

7800

\CAnna Palozzi \SPalozzi \GAnna \L28th Floor, 74 King Street,

 Melbourne, Victoria, 3000 \T(03) 9335 8534 \F(03) 9335

7800

\CBarbara Ryan \SRyan \GBarbara \L28th Floor, 74 King Street,

 Melbourne, Victoria, 3000 \T(03) 9335 8514 \F(03) 9335

7800

Technical Reference Guide: User Interfaces Version 7.5.1

148 Chapter 8: Printing DUA scripts

\CEnnio Torresan \STorresan \GEnnio \L28th Floor, 74 King

Street, Melbourne, Victoria, 3000 \T(03) 9335 1423 \F(03) 9335

7800

\CJacqueline Turner \STurner \GJacqueline \L28th Floor, 74

King Street, Melbourne, Victoria, 3000 \T(03) 9335 8760

 \F(03) 9335 7800

 149

Chapter 9

Advanced features

This chapter describes several advanced Access Presence features, and includes the

steps to configure for them.

It includes the following:

• Configuring proxy authorization for ‘single sign on’

• Configuring external SAML authentication

• Configuring related-entry workflow

• Configuring the approval process

• Configuring for two-factor authentication

Configuring proxy authorization for ‘single sign on’

Proxy authorization facilitates ‘single sign on’ – that is, when a user logs on to their

computer, through Windows for example, they also log onto ViewDS automatically.

This streamlines ‘self service’ and there is no need to maintain a separate set of

passwords for ViewDS users.

What is proxy authorization

Proxy authorization is a process where ViewDS assigns privileges based on logon

information passed to it by an external agent, rather than its own authentication

mechanism.

The external agent is usually a web server, which passes the logon information to

Access Presence through an environment variable that uniquely identifies an entry in

the directory. The name of the environment variable is set by the configuration-file

parameter webRemoteUser (see page 19) which by default is REMOTE_USER.

The proxy authorization process uses mechanisms defined in IETF Standard

RFC 3875 – The Common Gateway Interface (CGI) Version 1.1; and IETF Standard

RFC 4370 – Lightweight Directory Access Protocol (LDAP) Proxied Authorization

Control.

Technical Reference Guide: User Interfaces Version 7.5.1

150 Chapter 9: Advanced features

How proxy authorization works

Figure 4 provides an overview of how proxy authorization works.

Figure 4: How proxy authorization works

The steps in Figure 4 are described below:

1. The user logs onto Windows and requests an Access Presence page.

The web server recognises that the requested page requires authentication, and

communicates with the client computer to confirm who is logged on.

The choice of authentication mechanism is a configuration option of the web

server. Possible options include SSPI (Windows authentication), Netegrity

SiteMinder or HTTP basic authentication.

2. The web server sends the page request to Access Presence, and sets the

environment variable REMOTE_USER to the user’s system-authentication ID.

3. Access Presence connects to the directory as the user that has been designated

the ‘proxy user’. It then searches the directory for the entry whose authorization

attribute matches the value of REMOTE_USER. (An attribute is designated the

authorization attribute during configuration for proxy authorization. It must be set to

the user’s system-authentication ID.)

4. If the search matches a single entry, the DSA returns the user’s Distinguished

Name (DN). Otherwise, the DSA returns nothing and Access Presence uses an

empty DN to represent an anonymous user.

5. Access Presence communicates with the DSA to obtain information for the

requested page. (This is restricted according to the privileges of the DN obtained

in the previous step.)

6. Access Presence returns the resulting web page to the web server.

7. The web server passes the page to the browser.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 9: Advanced features 151

Requirements

There are several requirements for proxy authorization:

• An authorization attribute must be selected to identify each directory user by their

system-authentication ID.

• The web server used with Access Presence must support an authentication

process and be able to publish the system-authentication ID to the environment

variable REMOTE_USER.

• The browser used must support the same authentication mechanism as that used

in the web server.

• To allow ‘self service’, your installation of ViewDS must implement Basic Access

Control (BAC).

Implementing proxy authorization

Implementing proxy authorization involves modifying the ViewDS configuration file

(see page 15) and web server used by Access Presence:

1. Select an authorization attribute to identify each directory user by their system-

authorization ID.

2. Set the configuration-file parameter webProxyUser to on. (If the parameter is not

included in the configuration file, add it.)

webProxyUser = on

3. Set the configuration-file parameter webProxyAuthAttribute to the name of

the authorization attribute (the attribute you selected to store system-

authentication IDs).

For example:

webProxyAuthAttribute = uid

4. Set each authorization attribute to the appropriate system-authentication ID. For

example, with Active Directory, the value is <domain>\<samAccountName>.

5. Create a directory user to be the ‘proxy user’.

6. Add the operational attribute proxyAgent to the entry for the ‘proxy user’ (see the

help topic Add an attribute to an entry).

7. Set the configuration-file parameter webProxyUser to the user name and

password of the ‘proxy user’.

For example:

webBindUser = vfsuper passwd

8. Set up your web server for authentication.

For Microsoft IIS, enable any of the authentication modes for the Access Presence

pages. For Apache, set up SSPI authentication for example.

Technical Reference Guide: User Interfaces Version 7.5.1

152 Chapter 9: Advanced features

Configuring external SAML authentication

SAML authentication, much like proxy authorization (described above), facilitates

‘single sign on’, allowing a user to access multiple services with a single log-in.

What is SAML authentication

Security Assertion Markup Language (SAML) is an XML-based, open-standard data

format for exchanging authentication and authorization data between parties, in

particular, between an identity provider and a service provider.

It is most commonly used for web browser ‘single sign on’ (SSO).

The SAML specification defines three roles: the principal (usually a user), the Identity

provider (IdP), and the service provider (SP). In the use case addressed by SAML, the

principal requests a service from the service provider and the service provider

requests and obtains an identity assertion from the identity provider. On the basis of

this assertion, the service provider can make an access control decision – in other

words it can decide whether to perform some service for the connected principal.

Requirements

Access Presence implements the SAML2 Web SSO profile, acting as the service

provider. It will use the HTTP Redirect binding for SAML authentication requests and

expects the SAML response to be provided using the HTTP Post binding. At present,

it only supports the X.509 Certificate representation of public key information in the

XML signature.

Access Presence expects an identity to be provided in the NameID element of the

SAML2 assertion’s Subject element. It will map the NameID to an identity in the

directory using the attribute identified by the webproxyauthattribute configuration

file option. It does not currently care what the NameID Format attribute is set to, but

assumes the NameID content is a simple string.

SAML2 authentication can only be enabled when Access Presence is using directory-

based Session Management (see page 9). The presence of the websamlentity

configuration-file parameter enables SAML2 authentication; although the

websamlidpurl and websamltrustanchor configuration-file parameters must

also be provided.

Implementing external SAML authentication

Implementing SAML authentication involves modifying the ViewDS configuration file

(see page 15) used by Access Presence:

1. Set the configuration-file parameter websamlentity to the URI the identifies your

Access Presence service provider.

2. Specify the URL of the SAML2 identity provider authentication endpoint in the

websamlidpurl configuration-file parameter.

3. Save a copy of the SAML identity provider's signing certificate in the Access
Presence configuration files.

4. Set the configuration-file parameter websamltrustanchor to the file name of the

copy of the SAML identity provider’s signing certificate.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 9: Advanced features 153

5. Set the configuration-file parameter webProxyAuthAttribute to the name of

the authorization attribute (the attribute you selected to store system-

authentication IDs).

For example:

webProxyAuthAttribute = uid

6. Configure the SAML2 IdP.

7. If required by the SAML identity provider, add the call-back URL for Access
Presence to the configuration-file parameter websamlendpoint.

Configuring related-entry workflow

An organization might have a policy that allows multiple entries for the same person.

The policy might allow one actual entry for the person and several references to this

entry were each represents, for example, a different role the person fulfils.

For example, consider a policy that involves organizationalPerson and

organizationalRole entries. It allows each employee to have just one

organizationalPerson entry, but this can be referenced by several

organizationalRole entries to represent the employee’s roles in the organization.

This is illustrated below.

Figure 5: Related entries

The related-entry workflow encourages a user to comply with the required policy when

they create a new entry for someone who already has an entry. When a user adds a

new entry for the above organizationalPerson, the workflow is as follows:

1. Access Presence presents the user with a Search Form (the particular Search

Form can be specified).

2. The user searches for ‘John Self’.

Technical Reference Guide: User Interfaces Version 7.5.1

154 Chapter 9: Advanced features

3. The Search Results page (specific to the related-entry workflow) lists all entries

that fit the search criteria, and displays a button next to each that allows the user

to create a new organizationalRole to reference the entry.

The page also gives the user the option to create a new

organizationalPerson entry if there is no existing appropriate entry.

4. The user creates a new organizationalRole for an entry. Access Presence

automatically populates the new entry's attributes with the user's search criteria

(so they don't have to enter the same information twice).

5. Access Presence adds a related-entry link to the new organizationalRole

entry, to all existing organizationalRole entries, and to the

organizationalPerson entry.

Implementing the related-entry workflow

1. Optionally, define a new Search Form to be used in the related-entry workflow.

You can define a Search Form through the ViewDS Management Agent (see the

help task Create a Search Form).

2. From the ViewDS Management Agent, perform the help task Define related entries

for the required object class. (In the above example, related entries would be

defined for the organizationalPerson object class.)

3. Optionally, if a template should be used instead of the Search Form template

during the related-entries workflow, declare the template in the configuration-file

parameter webRelatedSearchTemplate (see page 21).

4. Optionally, if a template should be used instead of the Search Results template

during the related-entries workflow, declare the template in the configuration-file

parameter webRelatedSearchResultTemplate (see page 21).

Configuring the approval process

This mechanism imposes an approval process on changes to the directory.

A user is designated either a ‘requestor’ or an ‘approver’. A requestor can submit a

request to add, modify, delete or move an entry. Later, a user with appropriate access

rights, an approver, can either approve or reject the request.

Using the approval process

The approval process applies when a requestor modifies, deletes, moves or adds a

subordinate to an entry. The following three example scenarios describe the approval

process from a user’s perspective.

Request modify

1. A requestor views an entry on the Expanded Entry page, which includes the

‘Request modify’ link (see VFRequestModifyHref on page 53). Note that this

link is only displayed to requestors.

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 9: Advanced features 155

2. The requestor clicks the ‘Request modify’ link. The Modify page is displayed,

which contains the ‘Request reason’ box and the attributes that can be modified by

a requestor.

3. The requestor enters the new attribute values and the reason for their request, and

submits the request.

4. Later, an approver is presented with a list of pending requests (see

VFRequestList on page 54).

5. The approver clicks the request and the Modify page displays the requestor’s

changes and the reason for the modification. The page also includes ‘Reject’ and

‘Approve’ buttons (the default presentation of these buttons can be modified

through the format file – see the Approval process tags on page 84).

Request single entry delete

1. A requestor views an entry on the Expanded Entry page.

2. The requestor clicks the ‘Request delete’ link (see VFRequestDeleteHref on

page 53). The Request Remove Entry page is displayed (see page 63) which

contains the ‘Request reason’ box.

3. The requestor enters their reason and submits the request.

4. Later, an approver is presented with a list of pending requests (see

VFRequestList on page 54).

5. The approver clicks the request and the Request Remove Entry page is displayed,

this time showing the reason for the request along with the ‘Reject’ and ‘Approve’

buttons.

Request move

1. A requestor adds several entries to the target-object cache and then views another

entry on the Expanded Entry page.

2. The requestor clicks the ‘Request move’ link (see VFRequestMoveHref on

page 53). The Select Target Object page (see page 68) page displays the entries

in the target-object cache that are valid possible superiors to the entry, along with

the ‘Request reason’ box.

3. The requestor enters their reason, selects a new superior and then submits

the request.

4. Later, an approver is presented with a list of pending requests (see

VFRequestList on page 54).

5. The approver clicks the request and the Select Target Object page is displayed,

this time showing:

• the reason for the request

• the ‘Reject’ and ‘Approve’ buttons

• the list of valid possible superiors, but with the requestor’s choice selected

Technical Reference Guide: User Interfaces Version 7.5.1

156 Chapter 9: Advanced features

Implementing the approval process

To implement the approval process:

1. Select the attributes that requestors can modify.

2. Assign users to be requestors or approvers.

3. Create and modify the appropriate templates.

These steps are discussed below.

1. Select the attributes that requestors can modify

To specify the attributes that can be modified by requestors, perform the following

ViewDS Management Agent help topic: Select the attributes that requestors can

modify.

2. Assign users to be requestors or approvers

Users are assigned as requestors or approvers through either Basic Access Control or

ViewDS Access Control.

If you are using Basic Access Control

Allocate the following access rights (see the ViewDS Management Agent help topic

View or modify an Access Control Item):

• Requestors should have modify access to the operational attribute

viewDSUpdateRequest, but not to the attributes available for modification.

• Approvers should have modify access to the operational attribute

viewDSUpdateRequest and also to the attributes available for modification.

If you are using ViewDS Access Control

Allocate the following access rights (see the ViewDS Management Agent help topic

Set the ViewDS Access Control for an entry):

• Requestors should have the accessLevel of requestor.

• Approvers should have the accessLevel of updater, admin or superuser.

3. Create and modify the appropriate templates

Make the following changes:

• Add the Approval process tags (see page 53) to the Expanded Entry page.

• Add an InputChecked directive to the format file (see page 75).

• Create a Request Remove Entry template (see page 63) and add the configuration-

file parameter webRequestRemoveEntryTemplate (see page 26).

Version 7.5.1 Technical Reference Guide: User Interfaces

Chapter 9: Advanced features 157

Configuring for two-factor authentication

Two-factor authentication is an approach to security that requires a user to enter two

different types of authentication to prove their identity.

The user enters their regular username and password, and is then asked to enter an

authentication code. The authentication code is a TOTP, which stands for ‘time-based

one-time password’, generated by a third-party app (for example, Google Authenticate).

As its name suggests, as soon as a one-time password enables access to Access

Presence, it is no longer valid.

Use case

When two-factor authentication has been implemented, a user has the option to

enable the feature on their account.

The user experience is as follows:

1. The user logs onto Access Presence with their username and password.

2. Clicks the menu option to ‘Enable two-factor authentication’. The resulting page

provides an ‘authentication secret’ to the user.

3. Opens a third-party authenticator app (for example, Google Authenticate) and

enters the ‘authentication secret’. The app provides the user with a time-based

one-time password (TOTP) that is valid for a limited period.

4. Returns to the ‘Enable Two-factor Authentication’ page in Access Presence

and submits the TOTP. Two-factor authentication is now enabled for the

user’s account.

The next time the user logs onto Access Presence, they enter their username and

password as usual. However, they will then be presented with the ‘Two-Factor

Authentication’ page and required to enter a new TOTP.

The user also has the option to disable two-factor authentication on their account.

Implementing

To implement two-factor authentication so that the feature is available to Access

Presence users:

1. Define a user attribute that will be used to store a user’s authenticator secret.

2. In the ViewDS configuration file (see page 20), set the value of the
webSessionAuthenticator parameter to the name of the new user attribute.

3. Apply access controls to the new user attribute in order to:

• Ensure that the value is only visible to the user and administrator.

• Optionally allow applications to determine whether the attribute is present

(without revealing the value) and therefore whether a user has enabled two-

factor authentication on their account.

4. Make the new user attribute available to the account used for managing session-

state information.

Technical Reference Guide: User Interfaces Version 7.5.1

158 Chapter 9: Advanced features

5. Define the following templates:

• Enable Two-Factor Authentication template (see page 32)

• Disable Two-Factor Authentication template (see page 33)

• Two-Factor Authentication template (see page 33)

6. Add menu items to Access Presence so that users can access the pages to

enable (see page 32) and disable (see page 33) two-factor authentication.

7. Declare the location of the templates in the ViewDS configuration file (see 24).

Free TOTP applications

The following is a selection of the free TOTP applications available:

• Microsoft Authenticator

• Google Authenticator: Android and Apple

• FreeOTP: Android and Apple

http://www.windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-4950-91ba-ca22d653759b
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://itunes.apple.com/fr/app/google-authenticator/id388497605?mt=8
https://freeotp.github.io/
https://itunes.apple.com/us/app/otp-auth/id659877384?mt=8

	Technical Reference Guide:
	User Interfaces
	Contents
	Chapter 1 About this guide
	Who should read this guide
	Conventions
	Related documents
	How this guide is organized

	Chapter 2 System overview
	Overview of Access Presence
	Main components
	Templates
	Format file
	Access Presence configuration files
	ViewDS configuration file
	Directory System Agent
	ViewDS Management Agent

	Main functionality
	Search forms
	Global changes
	Target objects
	Context attributes
	Alternative hierarchy
	Report printing
	Approval process

	Access Presence Cookies
	Cookie Security

	Session Management
	Cookie-based Session Management
	Directory-based Session Management

	Overview of the Printing DUA
	Input script
	Output file

	Chapter 3 Configuration files
	Access Presence configuration files
	Extra template file
	Location
	Syntax
	Examples

	MIME mapping file
	Location
	Syntax
	Examples
	Example 1
	Example 2
	Example 3

	Post-processing command file
	Location
	Syntax

	ViewDS configuration file
	General parameters
	Authentication parameters
	Two-factor authentication parameters
	Search Form parameters
	Search Results parameters
	Search parameters
	Display and format parameters
	Image parameters
	Template location parameters
	Other template-related parameters

	Additional Access Presence files
	Configuring for printing
	Configuring for global changes

	Chapter 4 Access Presence templates
	Common tags and arguments
	Common template tags
	<VFUserID>
	<VFPasswordPolicyExpiry [before=1*CHAR] [after=1*CHAR]>
	<VFPasswordPolicyGraceLogins [before=1*CHAR] [after=1*CHAR] >
	<VFUserURI [id=*CHAR]>
	<VFDN>
	<VFSetSearchForm name=1*CHAR>
	<VFBaseDNURI [id=*CHAR]>

	Common arguments
	id
	html
	confirm
	format
	scope

	Authentication template
	<VFAuthURI [id=*CHAR]>
	<VFAuthUserNameID>
	<VFAuthUserPassID>
	<VFAuthReferer>

	Two-factor authentication templates
	Enable Two-Factor Authentication template
	<VFEnableAuthenticatorFormHref [id=*CHAR] [html=1*CHAR]>
	<VFAuthenticatorEnableForm></VFAuthenticatorEnableForm>
	<VFAuthenticatorSecretInput [otpuri=1|0]>
	<VFAuthenticatorCodeInput>

	Disable Two-Factor Authentication template
	<VFDisableAuthenticatorFormHref [id=*CHAR] [html=1*CHAR]>
	<VFAuthenticatorDisableForm></VFAuthenticatorDisableForm>

	Two-Factor Authentication template
	<VFAuthenticatorURI [id=*CHAR]>
	<VFAuthenticatorID>

	Welcome template
	<VFBanner>
	<VFVersion>
	<VFSearchFormURI [restricted= {user | base | *CHAR}] [id=*CHAR]>
	restricted
	id

	<VFSearchFormList [showdn] [useScript=1*CHAR]>
	showdn
	useScript

	<VFWelcomeURI [id=*CHAR]>

	Search Forms template
	Managing and defining Search Forms
	Drop-down lists
	Attribute ID
	Template tags
	<VFSearchURI [restricted= {user | base | *CHAR}] [id=*CHAR]>
	<VFSearchFieldVal [id=1*DIGIT] [spacing=1*DIGIT]>
	spacing

	<VFSearchFields [selectable = { on | off }] [columns = 1*DIGIT]>
	selectable
	columns

	<VFSearchOptions>
	<VFDoSearchID>
	<VFBanner>
	<VFSearchFormName>
	<VFSearchFormURI>
	<VFLDAPQueryURI [restricted= {user | base | *CHAR}]>
	<VFLDAPQueryID>

	Search-context tags
	<VFSetContextID>
	<VFClearContextID>
	<VFSearchField name=1*CHAR [id=1*CHAR] [html=`1*CHAR`]>
	name
	html

	<VFQueryFieldVal name=1*CHAR [id=1*CHAR] >
	name
	id

	Search Results template
	<VFQueryFieldVal id=1*DIGIT [spacing=1*DIGIT]>
	<VFSearchNumResult>
	<VFSearchResHeader [format=1*CHAR]>
	<VFSearchResult [useScript=1*CHAR] [format=1*CHAR] [alwaysFormat=on|off]>
	useScript
	alwaysFormat
	format

	<VFQueryFields>
	<VFBanner>
	<VFRelatedEntryInput [format=*CHAR]>
	<VFRelatedEntryForm> </VFRelatedEntryForm>
	Examples

	<VFQueryURI [template=*CHAR] [filterfor=*CHAR] [scope=user|base|*CHAR] [escval=on|off] [id=*CHAR] [pageSize=*DIGIT] [reverse] [raw]>
	Tags for navigating multiple Search Results
	URIs produced

	Expanded Entry template
	Core template tags
	<VFExpandDN [useScript=1*CHAR] [reverse=on|off] [superioronly=on|off] [fromdepth=1*DIGIT] [format=1*CHAR] [id=*CHAR]>
	useScript
	reverse
	superioronly
	fromdepth
	format
	id

	<VFExpandAtt [useScript=1*CHAR] [alwaysFormat=on|off] [id=*CHAR] [format=1*CHAR] [dnformat=1*CHAR] >
	useScript
	alwaysFormat
	id
	format
	dnformat

	<VFExpandSubclass [useScript=1*CHAR] [alwaysFormat = yes|no] [format=1*CHAR] [show=none|nonleaf|all] [id=*CHAR] [scope= {user | base | *CHAR}]>
	useScript
	alwaysFormat
	format
	show
	id
	scope

	<VFBanner>
	Declaring the label
	Declaring a preferred name
	Declaring the special attribute

	<VFAssPassFormHref [html=1*CHAR] [id=*CHAR]>
	<VFLabel>

	Target object tags
	<VFSetTargetObjHref [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFShowTargetObjHref [html=1*CHAR] [id=*CHAR] [expandSingle= on|off] >
	<VFMoveHref [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFImportHref [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFRemovalsHref [html=1*CHAR] [id=*CHAR]>

	Alternative hierarchy tags
	<VFExpandAltSubord type=AttributeName [useScript=1*CHAR] [alwaysFormat=yes|no] [format=1*CHAR] [scope= {user | base | *CHAR}] [show=none|nonleaf|all] [id=*CHAR] >
	<VFAltAddHref type=AttributeName [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFAltMoveHref type=AttributeName [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFAltRemoveHref type=AttributeName [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFAltExpandHref type=AttributeName [html=1*CHAR] [id=*CHAR]>

	Approval process tags
	<VFRequestDeleteHref [html=1*CHAR] [id=*CHAR]>
	<VFRequestAddSubHref [html=1*CHAR] [id=*CHAR]>
	<VFRequestModifyHref [html=1*CHAR] [id=*CHAR]>
	<VFRequestMoveHref [html=1*CHAR] [id=*CHAR]>
	<VFRequestImportHref [html=1*CHAR] [id=*CHAR]>
	<VFRequestRemovalsHref [html=1*CHAR] [id=*CHAR]>
	<VFRequestList [id=*CHAR] [caption=*CHAR]>
	<VFRequestHistory [id=*CHAR] [caption=*CHAR]>

	Error template
	<VFErrorStr [format=1*CHAR]>
	<VFHasError>

	Modify template
	<VFModifyHref [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFModifyForm [id=*CHAR] name=1*CHAR [summary=1*CHAR]>
	<VFModifyAtt [width=1*DIGIT] [id=*CHAR] [format=*CHAR] [description={row | heading | data}] [save = {top | bottom | both} [checkbox[=1*CHAR]]>
	save
	description
	checkbox

	<VFDeleteHref [confirm] [html=1*CHAR] [id=*CHAR]>

	Modify Value Form template
	<VFModifyForm [id=*CHAR] name=1*CHAR [summary=1*CHAR]>
	<VFModifyVal [width=1*DIGIT] [id=*CHAR] [format=*CHAR] [description={row | heading | data}] [save = {top | bottom | both} [checkbox[=1*CHAR]]>
	save
	description
	checkbox

	<VFAddValueInput [html=1*CHAR]>
	<VFModifyValueInput [html=1*CHAR]>
	<VFDeleteValueInput [html=1*CHAR]>
	<VFPreprocessInput [html=1*CHAR]>

	Add template
	<VFAddSubHref [confirm] [html=1*CHAR] [id=*CHAR]>
	<VFAddOCSel>
	<VFAddOCURI [id=*CHAR]>

	Print Form template
	<VFPrintFormHref [html=1*CHAR] [id=*CHAR]>
	<VFPrintSelection [width=1*DIGIT] [useScript=1*CHAR] [scope= {user | base | *CHAR}]>
	useScript
	scope

	Print template
	<VFPrintReport >

	New Password template
	<VFChangePassFormHref [html=1*CHAR] [id=*CHAR]>
	<VFChangePassURI [id=*CHAR]>
	<VFAuthOUserPassID>
	<VFAuthUserPassID>
	<VFAuthUserPassID2>
	<VFAuthReferer>

	Assign Password template
	<VFAssPassTable >
	<VFAssPassURI [id=*CHAR]>
	<VFAuthUserNameID>

	Request Remove Entry template
	<VFRequestDeleteURI [html=1*CHAR] [id=*CHAR]>

	Global changes templates
	Global Change Request template
	<VFGCRequestHref html=*CHAR>
	<VFGCRequestURI [id=*CHAR] [html=1*CHAR]>
	<VFGCRequest [width=1*DIGIT]>

	Global Change Confirm
	<VFGCConfirmURI [id=*CHAR] [html=1*CHAR]>
	<VFGCConfirm [width=1*DIGIT]>

	Global Change Results
	<VFGCResults [id=*CHAR]>

	Target-object cache templates
	Common target object tags
	<VFTargetObjStr>
	<VFTargetObjDN [useScript=1*CHAR]>
	useScript

	<VFTargetObjOC>

	Show Target Objects template
	<VFShowTargetObjectsURI [id=*CHAR] >
	<VFShowTargetObjects [format=1*CHAR] [id=*CHAR] >

	Select Target Object template
	<VFSelectTargetObjURI [id=*CHAR] >
	<VFSelectTargetObj [format=1*CHAR] [id=*CHAR] >

	Select Entries to Import template
	<VFSelectImportsURI [id=*CHAR] >
	<VFSelectImports [format=1*CHAR] [id=*CHAR] >

	Select Entries to Remove template
	<VFSelectRemovalsURI [id=*CHAR] >
	<VFSelectRemovals [format=1*CHAR] [id=*CHAR] >

	Select Entries to Add to Alternative Hierarchy template
	<VFAltAddSelectionURI [id=*CHAR] >
	<VFAltAddSelection [format=1*CHAR] [id=*CHAR] >

	Select Entries to Move in Alternative Hierarchy template
	<VFAltMoveSelectionURI [id=*CHAR] >
	<VFAltMoveSelection [format=1*CHAR] [id=*CHAR] >

	Chapter 5 Format file
	Location and syntax
	attName
	objClass
	formatID
	optional
	RequestReason
	Example

	InputChecked
	Example:

	Assessment order and examples
	Example 1
	Example 2

	URI and link tags
	<VFURI [id=*CHAR] [scope= {base | entry | *CHAR}]>
	<VFHref [id=*CHAR] [html=1*CHAR]>
	<VFAddValueHref [id=*CHAR] [html=1*CHAR]>
	<VFModifyValueHref [id=*CHAR] [html=1*CHAR]>
	<VFOrderHref action={ top | bottom |up | down } [id=*CHAR] [html=1*CHAR]>
	<VFOrderResetHref html=*CHAR>
	<VFRandomNum>
	<VFOEL [style=crlf]>

	Display name tags
	<VFAttVal id=1*CHAR [escval=on|off] [list=1*DIGIT] [width=1*DIGIT [preChar=CHAR] [postChar=CHAR]] [scope= {base | user | *CHAR}] [unqualified] [DNFormat=1*CHAR] [delimiter=1*CHAR] [valueformat=1*CHAR] [[reference=1*CHAR] | [path=1*CHAR]] >
	<VFAttName id=1*CHAR [ifChanged] [force] [scope={ base | user | *CHAR}]>
	<VFAttIcon id=1*CHAR [scope={ base | user | *CHAR}]>
	<VFAttType id=1*CHAR [scope={ base | user | *CHAR}]>
	<VFClassName [ifChanged]>
	<VFAttSize id=1*CHAR [scope= {base | user | *CHAR}] [unqualified] [label=*CHAR] [modifier=1*DIGIT]>

	Target object tags
	<VFAddTargetObjHref [confirm] [html=1*CHAR [id=*CHAR]>
	<VFDeleteTargetObjHref [confirm] [html=1*CHAR [id=*CHAR]>
	<VFSelectTargetObjInput>

	Alternative hierarchy tags
	<VFAltType [type=AttributeName] [force] [scope={ base | user | *CHAR}]>

	Approval process tags
	<VFRequestReason [rows=1*DIGIT] [cols==1*DIGIT]
	<VFRequestSaveInput [html=1*CHAR] >
	<VFRequestCancelInput [html=1*CHAR]>
	<VFRequestApproveInput [html=1*CHAR]>
	<VFRequestRejectInput [html=1*CHAR]>

	Chapter 6 Server-side attributes
	Important note
	Concepts
	Obtain user-specific operational attributes
	Obtain a base entry
	Obtain operational attributes
	Schema operational attributes
	DUA presentation operational attributes

	DUA presentation operational attributes
	duaBanners
	Components
	start-banner1
	start-banner2
	startup-message
	search-banner

	Examples

	attributePresentation
	Components
	type
	display-names
	flags
	delimiters
	preprocessing
	attrib-hiding
	replace-strings
	description
	dateTimeFormat

	Examples
	fields

	objectClassPresentation
	Components
	object-class
	displayName
	sub-classes
	expanded-atts
	special-att
	modify-atts
	inherit-atts
	username-atts
	exp-name-label
	useNamingOptionals
	reverseLink
	RelatedEntries
	preferredName
	request-atts

	Examples

	searchOptions
	Components
	SearchOptions
	SearchForm
	AttField

	Examples
	defaultEntitlement
	Components
	limit
	func-cap
	gc-limit (not supported by Access Presence)

	Examples

	Preprocessing functions
	Compress
	Compare chars
	Remove chars
	Replace chars
	Case
	Replace words
	Compare words
	Length
	Truncate
	Unique values
	Phone
	Common name
	Build attribute
	Abbreviate attribute
	Regular expression match

	User operational attributes
	userEntitlement
	Examples

	userConfig
	context
	default-base
	disp-pref (not supported by Access Presence)

	Approval process operation attributes
	New entry operation attributes
	newSubordinateModifyRights
	permittedNewSubordinates
	permittedImports

	Other operational attributes
	sortSubs
	hierarchyName
	hierarchyNameSpecification
	updatersName
	viewDSMatchQuality and viewDSSimpleMatchQuality
	viewDSSessionObject
	unabbreviatedHierarchyName
	resolvedDistinguishedName

	Chapter 7 Printing DUA
	Running the Printing DUA
	Input script syntax
	Script parameters
	Entry extraction parameters
	base
	include_base
	depth
	exclude_subtrees
	select_filter
	extract_type
	preserve_hierarchy

	Entry ordering parameters
	class_order
	entry_sort

	Data output parameters
	file_start
	entry_output
	file_end
	data_formats
	formatBool
	formatDN

	Subordinates
	Path data
	Distinguished Name output
	Parameter-value definitions
	string
	number
	objectclass

	Supported attribute syntaxes

	Chapter 8 Printing DUA scripts
	Scripts
	phonelist.ds
	Input script
	Sample output of phonelist.ds

	unitlist.ds
	Input script
	Sample output of unitlist.ds

	executivelist.ds
	Input Script
	Sample output of executivelist.ds

	mailinglist.ds
	Input script
	Sample output of mailinglist.ds

	Name: Carmello Costa
	Name: Veronica Brennan
	Name: Marie Gander
	staffdetails.ds
	Input script
	Sample output of staffdetails.ds

	Chapter 9 Advanced features
	Configuring proxy authorization for ‘single sign on’
	What is proxy authorization
	How proxy authorization works
	Requirements
	Implementing proxy authorization

	Configuring external SAML authentication
	What is SAML authentication
	Requirements
	Implementing external SAML authentication

	Configuring related-entry workflow
	Implementing the related-entry workflow

	Configuring the approval process
	Using the approval process
	Request modify
	Request single entry delete
	Request move

	Implementing the approval process
	1. Select the attributes that requestors can modify
	2. Assign users to be requestors or approvers
	If you are using Basic Access Control
	If you are using ViewDS Access Control

	3. Create and modify the appropriate templates

	Configuring for two -factor authentication
	Use case
	Implementing
	Free TOTP applications

