
ViewDS Access Sentinel:

Installation and Reference Guide

Published: December 2020
Version: 7.5.1
© ViewDS Identity Solutions



ViewDS Access Sentinel: Installation and Reference Guide

For ViewDS Release 7.5.1

December 2020

Document Lifecycle

ViewDS may occasionally update documentation between software releases. Therefore, please visit www.viewds.com to ensure

you have the PDF with most recent publication date. The site also hosts the most recent version of this document in HTML

format.

This publication is copyright. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act,

no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise) be

reproduced, stored in a retrieval system or transmitted without prior written permission. Inquiries should be addressed to the

publishers.

The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy of this

publication. Notwithstanding, ViewDS Identity Solutions does not assume responsibility for any errors nor for any

consequences arising from any errors in this publication.

The software and/or databases described in this document are furnished under a licence agreement. The software and/or

databases may be used or copied only in accordance with the terms of the agreement.

ViewDS Directory, ViewDS Access Presence and ViewDS Access Sentinel are trademarks of ViewDS Identity Solutions.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

All other product and company names are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2020 ViewDS Identity Solutions

ABN 19 092 422 47

http://www.viewds.com/


Contents

Contents

About this guide 1
Who should read this guide 1

Related documents 1

How this guide is organized 1

About ViewDS Access Sentinel 3
What is Access Sentinel? 3

Why use XACML access controls? 3

Brief introduction to XACML 4

Access Sentinel architecture 7

Installing and configuring 13
XACML configuration parameters 13

Installing the Authorization PolicyManager 17

Configuring the Authorization PolicyManager 17

Deploying the IIS PEP 19

Deploying the Apache PEP 22

Modifying the SOAP address 24

Tracing decisionmaking 25

About XACML framework and policy 27
XACML components 27

XACML terms to remember 28

Introduction to XACML policy 28

Attribute-based versus role-based access control policies 32

Obligations and advice 34

Delegation 35

XACML tutorials 39
HTTP PEP tutorial 39

ViewDS PEP tutorial 53

XACML attributes provided by a PEP 65
XACML attributes provided by an HTTP PEP 65

- i -



Contents

XACML attributes provided by the ViewDS PEP 67

Operational attributes 69
viewDSXACMLSubtreePolicy 69

viewDSXACMLEntryPolicy 70

viewDSXACMLAttributePresentation 70

viewDSXACMLPolicyVersion 71

viewDSXACMLNamedExpression 72

viewDSXACMLActivePolicy 73

viewDSXACMLConfiguration 74

- ii -



ViewDS Access Sentinel: Installation & ReferenceGuide

About this guide

This guide introduces Access Sentinel and the ViewDS implementation of XACML. It also
includes how to install Access Sentinel, and how to write andmanage XACML policy.

This section describes:

l Who should read this guide

l Related documents

l How this guide is organized

Who should read this guide
Read this guide if you need to install Access Sentinel and become familiar with writing and
managing XACML policy for applications. Before using this guide, you should first read the
'SystemOverview' in theViewDS Directory: Installation andOperation Guide.

Related documents
Other documents relating to Access Sentinel are:

l ViewDS Directory: Installation andOperation Guide

l ViewDS Access Proxy Installation Guide

l ViewDS Technical ReferenceGuide: Directory SystemAgent

l ViewDS Technical ReferenceGuide: User Interfaces

l ViewDSManagement Agent in-application help

l ViewDS Authorization PolicyManager in-application help

l ViewDS Application Integration Kit for Java or .NET

How this guide is organized
This guide contains the following:

About this guide
Provides an overview of this guide.

About ViewDS Access Sentinel
Provides an overview of the ViewDS XACML framework and of Access Sentinel, along with
an introduction to XACML.

Installing and configuring
Provides the instructions to install and configure Access Sentinel.

- 1 -



About this guide

About XACML framework and policy
Provides information about Access Sentinel’s implementation of XACML.

XACML tutorials
Provides the steps to define and apply an XACML policy to a resource.

XACML attributes provided by a PEP
Provides a technical reference for the XACML attributes provided by each Policy
Enforcement Point (PEP).

Operational attributes
Provides a technical reference for Access Sentinel’s operational attributes.

- 2 -



ViewDS Access Sentinel: Installation & ReferenceGuide

About ViewDS Access

Sentinel

This chapter introduces the ViewDS XACML framework and Access Sentinel, and provides
a brief overview of XACML (eXtensible AccessControl Markup Language).

It describes the following:

l What is Access Sentinel?

l Why use XACML access controls?

l Brief introduction to XACML

l Access Sentinel architecture

What is Access Sentinel?
TheXACML framework is part of the core ViewDS product. It allows you to apply the
XACML Access Control scheme by defining XACML policy that controls access to a
ViewDS directory.

ViewDS Access Sentinel is an extension of the XACML framework that allows you to
apply XACML policy to applications external to ViewDS. Access Sentinel requires
additional licencing beyond that of the core ViewDS product.

The XACML framework and Access Sentinel conform to the XACMLVersion 3.0 standard.

Why use XACML access controls?
The ViewDS XACML framework and Access Sentinel allow a fine-grained enterprise-wide
approach tomanaging access-control policy across all of an organisation’s applications and
data sources.

Fine-grained access-control policy goes beyond previousmodels of access control. These
policies not only control ‘who can do what with which resources’, but also control the why,
when, where and how of entitlement.

Enterprise-wide access controls allow an organization to define, enforce, and audit their
access-control policies. This is of increasing importance in the face of regulatory pressures
and is discussed inmore detail below.

- 3 -

http://www.oasis-open.org/


About ViewDS Access Sentinel

Enterprise-wide access control
Traditionally, each application within an organisation has its own access-control
mechanism. The access controls are therefore duplicated across applications andmust be
managed individually. Aswell as creating administrative inefficiencies, this approach also
complicates the task of imposing enterprise-wide access-control policies.

An alternative is to remove access control from the applications and run it as a discrete
service shared acrossmany disparate applications.

This approach hasmany benefits:

l Consistent access-control policies can be applied to all applications and data sources

l Support andmaintenance is streamlined

l Auditing and compliance are simplified

Additionally, enterprise-wide access control allows security to bemanagedmore efficiently.
Themoment a policy is created or updated, it can be applied across all relevant applications.
These applications become less complex and easier to maintain without their entitlement
layer – a change to a security policy requires nomodification to the application’s code.

Brief introduction to XACML
XACMLVersion 3.0 is a standard that provides a framework for fine-grained, enterprise-
wide access control. The standard describes two languages, both written in XML: an
access-control policy language, and an access-control decision language.

The policy language is used to describe access-control requirements by defining policies
that describe, for example, who can accesswhat and when. The decision language is used
to form requests and responses. A request askswhether a given action by a given entity
should be allowed; and a response provides the answer, which is determined according to
an XACML policy.

Simplified XACML implementation
The following illustrates a simplified XACML implementation.

- 4 -



ViewDS Access Sentinel: Installation & ReferenceGuide

In the following illustration, a user attempts to view a document file protected by an XACML
access-control implementation. The implementation determineswhether the user should be
permitted or denied access by interrogating the appropriate XACML policy.

The policymight include considerations such as the user’s security level, department, role,
position, location and the time of day. All combine to determine whether the user should be
allowed access to the resource (as shown below).

XACML access control components
An implementation of XACML access control has four main logical components, as shown
in the illustration below.

The logical components are:

l Policy Enforcement Point (PEP)
Protects a resource from unauthorized actions.

- 5 -



About ViewDS Access Sentinel

l Policy Decision Point (PDP)
Determineswhether access should be granted to a protected resource.

l Policy Administration Point (PAP)
Allows policies to be created and stored in a repository.

l Policy Information Point (PIP)
Stores additional information, such as user attributes, that can be used by the PDP to
make access-control decisions.

In the illustrated example the resources protected by a Policy Enforcement Point (PEP) are
the web pages available through a web server.

The steps shown in the illustration are as follows:

1. A user requests access to a web page.

2. The web server asks the Policy Enforcement Point (PEP) to send an 'authorization
decision request’ to the Policy Decision Point (PDP). The request includesXACML
attributes that identify (among other things) the user, the resource they are attempting
access, the action they are attempting to perform, and the environment (for example,
date and time).

3. The Policy Decision Point (PDP) determineswhether access should be permitted. It
looks at the appropriate XACML policy in the Policy Administration Point (PAP), and the
appropriate user attributes in the Policy Information Point (PIP). The information in the
PIP allows the PDP to identify the user attempting to access the resource.

4. The PDP returns an 'authorization decision response’ to the Policy Enforcement Point
(PEP), which then acts on the decision to permit or deny access to the user.

XACML terms to remember
There are a couple of important XACML terms to remember:

l Target – the set of resources protected by the XACML policy (for example, a directory or
a web site)

l Resource – the specific item (for example, an entry, attribute or value in the directory or
a specific web page) within the target that the subject is attempting to access

l Subject – the user attempting to access a resource
l Action – the action attempted by the subject (e.g. view or modify an entry or web page)

These terms are illustrated below for XBAC where the target is the ViewDS directory and
the resource is an individual directory entry.

- 6 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Controlling access to the PIP and PAP

Many organizations implement an XACML solution with the intention to provide a single
point for policymanagement and enforcement. However, most XACML solutions fail to
meet this expectation because the PAP and PIP are accessed by users and require their
own separate access controls.

Therefore, many XACML solutions introduce a requirement for three new, separate
access-control systems: one for the PAP, a second for the PIP, and a third for the enterprise
XACML access-control system.

An alternative, however, that avoids the complexity of this recursive hierarchy is to unify the
PDP, PAP and PIP into a single policy server. This is the approach adopted by ViewDS and
is discussed in the next sectionAccess Sentinel architecture.

Repositories for the PIP and PAP

The repository for the Policy Information Point (PIP) is typically an existing LDAP directory
because it usually already contains the organization’s user attributes. However, asmost
directories cannot manage XML, the repository for the Policy Administration Point (PAP) is
typically a relational database that supports XML.

An improved approach that makes policymanagement and implementationmore efficient is
to store both PIP and PAP data in a single directory that fully supports XML. Thismakes the
administrator’s jobmuch easier as they can search on the individual XML components
within policy. Again, this is the approach adopted by ViewDS and is discussed in the next
sectionAccess Sentinel architecture.

Access Sentinel architecture
Access Sentinel extends the XACML framework that is installed as part of the core ViewDS
product’s Directory SystemAgent (DSA).

The XACML framework comprises a PDP that accepts authorization decision requests
from an internal PEP, which protects the directory from unauthorized access. It also
includes a PIP, a PAP, and a user interface to the PAP, which is integrated into the ViewDS
Management Agent.

Access Sentinel extends the XACML framework as follows:

l It extends the PDP’s functionality to accept authorization decision requests from an
external PEP.

l It includes PEPs to protect applications that are external to ViewDS.

l It includes a dedicated PAP application, the Authorization PolicyManager, for
administration of XACML policy.

These features are illustrated below.

- 7 -



About ViewDS Access Sentinel

The remainder of this section describes some of the key features of the framework and
Access Sentinel.

Unified policy server
An important capability of the ViewDS XACML framework is that it unifies the Policy
Decision Point (PDP), Policy Administration Point (PAP) and Policy Information Point
(PIP). Access to the PAP and PIP is therefore controlled internally, eradicating the
complexities and performance overheads associated with the recursive hierarchy described
previously.

Unified PIP and PAP user interface
The PAP user interface allows XACML policy to be defined andmanaged. There are two
options for accessing the user interface – the ViewDSManagement Agent and the
Authorization PolicyManager.

The ViewDSManagement Agent is a windows-based application supplied with ViewDS,
which allows you tomanagemultiple implementations remotely. It allows you tomanage
user attributes stored in the Policy Information Point (PIP), andmanage policy in the Policy
Administration Point (PAP). You can thereforemanage both the PAP and PIP from the
same application.

- 8 -



ViewDS Access Sentinel: Installation & ReferenceGuide

The PAP user interface is also available as a Java-based application, the Authorization
PolicyManager, which provides the same PAP functionality as the ViewDSManagement
Agent. It can be distributed to themost appropriate people in an organisation to help ensure
policies aremaintained efficiently.

Versioning of access-control policy
Users of either PAP interface can create a new version of a policy and then apply it at their
discretion. Users can define when a new version should be enabled allowing them to phase
in the new version or roll back to a previous one.

Options for integrating external applications
While ViewDS includes an internal PEP to protect the directory from unauthorized actions,
Access Sentinel provides PEP solutions to protect external applications.

The following options are available for integrating external applicationswith Access
Sentinel:

l PEPs: HTTP PEPs for Apache and IIS

l Application Integration Kits for Java and .NET

l SAML

l REST

l JSON over REST

HTTP PEPs

TheHTTP PEPs allow XACML policy to be applied to theMicrosoft IIS and Apache web
servers. Their main tasks are to:

l allow the web server to ask the PEP to enforce authorization decisions for the HTTP
requests it receives

l send an XACML authorization decision request to the PDP for each HTTP request, and
receive an XACML authorization decision response

l permit or deny access based on the authorization decision

- 9 -



About ViewDS Access Sentinel

These tasks are illustrated below.

Application Integration Kits for Java and .NET

The Access Sentinel’s Application Integration Kits (AIKs) help streamline development of a
PEP. They are C# .NET and Java class libraries that abstract the communication between
a bespoke PEP and the PDP.

Attempting to communicate with the PDP without the library is complex. There are the
intricacies of building the XACML authorization decision request, wrapping and sending it in
a SOAP envelope, and intercepting the PDP’s response. In contrast, the Application
Integration Kits simply require a PEP tomake calls that supply the attributes needed to
make an authorization decision.

The AIKs are included in the Access Sentinel distribution.

SAML

Access Sentinel supports the SAML 2.0 Profile of XACML, Version 2.0 OASIS standard,
allowing any external applications that also support this standard to interact with Access
Sentinel for authorization decisions.

The implementation allows the use of SAML 2.0 to carry XACML authorization decisions,
authorization decision queries, and authorization decision responses. Themethod uses
HTTP and SOAP as part of the authorization request/response interaction.

REST

Access Sentinel supports the REST Profile of XACML v3.0, Version 1OASIS standard,
allowing any external applications that also support this standard to interact with Access
Sentinel for authorization decisions.

The implementation allows the use of XACML in a RESTful architecture, enabling
interoperability of RESTful Authorization-as-a-Service (AZaaS) solutions. Unlike the SAML
profile, thismethod does not require the use of SOAP and allows XML-based authorization
requests and responses to be transported directly over HTTP.

- 10 -



ViewDS Access Sentinel: Installation & ReferenceGuide

JSON over REST

Access Sentinel supports the Request / Response Interface based on JSON andHTTP for
XACML 3.0, Version 1.0 (Working Draft 14) OASIS draft standard, allowing any external
applications that also support this draft standard to interact with Access Sentinel for
authorization decisions.

The implementation allows the use of JSON to represent authorization request and
responsemessages that are sent via REST.

- 11 -





ViewDS Access Sentinel: Installation & ReferenceGuide

Installing and

configuring

This section includes the instructions for installing and configuring ViewDS Access Sentinel.

NOTE: The XACML framework, and therefore ViewDS Directory, is a prerequisite
for installing Access Sentinel.

NOTE: An Access Sentinel licence is also required.

To install and configure ViewDS Access Sentinel:

1. If ViewDS Directory is not installed, see theViewDS Directory: Installation and
Operation Guide.

2. Add the Access Sentinel licence to the DSA’s configuration – see the ViewDS
Management Agent help topic, Import licence information.

3. Read about the XACML configuration parameters.

4. Modify the XACML configuration parameters as required.

5. Optionally, install and configure the Authorization PolicyManager:

a. Installing the Authorization PolicyManager

b. Configuring the Authorization PolicyManger

6. Perform one of the following tasks:

l Deploying the IIS PEP

l Deploying the Apache PEP

XACML configuration parameters
This subsection describes the XACML configuration parameters that apply to XACML
policy, and includes the steps tomodify them through the ViewDSManagement Agent.

l Combining algorithm

l Default version

l RFC822 name attribute

- 13 -



Installing and configuring

l User base object

l User attributes

l Resource attributes

l Policy base object

l Allowed origins

Combining algorithm
ViewDS can evaluate policies from different sources: native ViewDS XACML policy
(defined using the ViewDSManagement Agent or the Authorization PolicyManager) and
non-native XACML policy (either declared in the viewDSXACMLPolicySet attribute or
supplied in the request).

When an internal decision request ismade only native policies are evaluated. If there is
more than one native policy, the results are combined using a deny override combining
algorithm.

However, when an external decision request ismade both native AND non-native policies
are evaluated. If a request instructs Access Sentinel to use only policies supplied within that
request (CombinePolicy=false), then the evaluation of other policies (for example native
policies) will result in a Not Applicable outcome.

If a request instructs Access Sentinel to combine polices supplied within that request and
other policies (CombinePolicy=true) then native polices are evaluated using a deny override
combining algorithm and non-native policies are evaluated using the combining algorithm
specified for that non-native policy set.

The results (native and non-native) are then combined using a Combining Algorithm:

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-overrides
Deny overrides: If any nested item (rule, policy or policy set) evaluates to deny, then the
container (policy or policy set) evaluates to deny; otherwise, if any item evaluates to
permit, then the container evaluates to permit; otherwise, the container evaluates to not-
applicable.

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-overrides
Permit overrides: If any nested item evaluates to permit, then the container evaluates to
permit; otherwise, if any item evaluates to deny, the container evaluates to deny;
otherwise, the container evaluates to not-applicable.

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-permit
Deny unless permit: If any nested item evaluates to permit, then the container evaluates
to permit; otherwise, the container evaluates to deny.

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-unless-deny
Permit unless deny: If any nested item evaluates to deny, then the container evaluates to
deny; otherwise, the container evaluates to permit.

For further information see the XACML 3.0 specification.

- 14 -

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html


ViewDS Access Sentinel: Installation & ReferenceGuide

Default version
Every XACML policy has a version number.

By default, when there aremultiple policies or policy sets with the same identifier, the Policy
Decision Point (PDP) uses the one with the highest version number. Alternatively, if a
Default Version is defined, the PDP uses the policy or policy set with the highest version
number less than or equal to this value.

This parameter only applies to XACML policy that was not defined through the ViewDS
Management Agent or the Authorization PolicyManager.

RFC 822 name attribute
This configuration parameter identifies a directory attribute that conforms to RFC 822
format. It allows the Policy Decision Point (PDP) to identify a subject by its email address.

This parameter applies to all XACML policy.

For more information, see Attribute look-up.

User attributes
The directory attributes the Policy Decision Point (PDP) will pre-fetch when it needs to
obtain a directory attribute from a user's entry.

This parameter applies to all XACML policy.

Resource attributes
The directory attributes the Policy Decision Point (PDP) will pre-fetch when it needs to
obtain a directory attribute from a resource entry (see Attribute look-up).

This parameter applies to all XACML policy.

User base object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a user entry. (The directory acts as a Policy Information Point by storing
information that can influence an access decision.)

This parameter applies to all XACML policy.

Policy base object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a policy or policy set.

This parameter applies to all XACML policy.

- 15 -



Installing and configuring

Allowed origins
Defines a cross-origin resource sharing (CORS) policy.

A CORS policy specifies the origins in HTTP requests that the Policy Decision Point (PDP)
accepts.

Each item in the list is a regular expression (see https://www.w3.org/TR/xmlschema-
2/#regexs) that ismatched against the origin in a request. The origin is accepted if it
matches at least one expression and rejected if it matches none of the expressions.

Consider the following example:
http://.*\.example\.com(:[0-9]+)?

This regular expressionmatches origins that specify any port, or no port, in any sub-domain
of example.com.

If no expressions are defined then all origins are rejected.

If an HTTP request does not specify an origin it is always accepted.

Modifying the XACML configuration
To set the XACML configuration parameters through the ViewDSManagement Agent:

1. At the bottom of the left pane, clickServer View.
2. In the left pane, click the appropriate server.

3. In the right pane, click theXACML Config tab.
4. Complete the boxes in the XACMLConfig tab as required.

5. At the bottom of the tab, clickSet XACML Configuration.

- 16 -

https://www.w3.org/TR/xmlschema-2/#regexs
https://www.w3.org/TR/xmlschema-2/#regexs


ViewDS Access Sentinel: Installation & ReferenceGuide

Installing the Authorization Policy Manager
The Authorization PolicyManager is a stand-alone PAP that can be installed on any
platform. It provides the same XACML access control functionality as the ViewDS
Management Agent.

To install the application:

1. Install Java SE Runtime (32-bit).

2. From the Access Sentinel distributionmedia, unzip the file PAPui.zip

Starting the Authorization Policy Manager
To start the application either:

l In the extracted folder, double-click PAPui.jar

l From a command shell, enter PAPui.jar

Trusted mode

When the application is in 'trustedmode', appropriate access is granted to a non-
administrative user who has been delegated administration rights to XACML policy (see
Composition-time delegation).

To start the application in trustedmode, enter either of the following from a command shell:
PAPui.jar --trusted

PAPui.jar -t

Configuring the Authorization Policy Manager
Configuring the application involves the following tasks:

l Installing a user certificate

l Connecting to a ViewDS server

l Getting started

l Setting local file security

Installing a user certificate
A user must be authenticated before they can connect the Authorization PolicyManager to
a ViewDS server.

There are two options available:

l Simple authentication – the user enters the username and password assigned to their
entry in the ViewDS directory. With simple authentication, the user has non-administrator
access to XACML policy. However, the user will have administrator access to specific
XACML policy if the application is started in trustedmode and an administrator has
delegated trust to the user through composition-time delegation.

- 17 -



Installing and configuring

l Certificate based authentication – a user certificate needs to be installed and
imported into the Authorization PolicyManager. With certificate based authentication, the
user has administrator access to all XACML policy.

To install a user certificate (PKCS #12 file):

1. Add the user certificate to the trusted subdirectory below the ViewDS install
directory. For example, on aWindows installation:
%VFHOME%\setup\trusted

Where %VFHOME% is the ViewDS install directory.

For further details, see Installing credentials in theViewDS Directory: Installation and
Operation Guide.

2. Import the PKI credentials into the Authorization PolicyManager:

a. From the Authorization PolicyManager'smenu bar, clickTools followed by
Keystore. A new window is displayed.

b. Click theYes with password button to create a keystore for the application.
c. Enter a password and clickOK. The Key Store window is displayed.

d. In theKey Storewindow, click Import and follow the prompts to import the user
certificate into the keystore.

Connecting to a ViewDS server
To connect the Authorization PolicyManager to a ViewDS server (DSA):

1. ClickFile followed by New Session. The Session window is displayed.

2. Enter a sessionName of your choice to appear in the left pane.
3. In theHost box, enter the address of your ViewDS server. For example, if the

Authorization PolicyManager is on the same host as the DSA, enter localhost.

4. Enter thePort number to connect to on the DSA (by default, 3000).

5. For simple authentication, enter yourUsername andPassword in the Simple tab.
Otherwise, for strong authentication, click theCertificate tab and select aKey Alias
and enter your Password.

6. Select theConnect immediately check-box.
7. ClickSave. The session is displayed in the left pane.

Getting started
This task introduces you to the interface:

1. In the left pane, right-clickDeltawing and from the drop-downmenu clickAdd XACML
Access Control Domain. Three tabs are displayed in the right pane: Policy Versions,
Attributes, and Roles. The interface is equivalent to the XACMLAC tab in the ViewDS
Management Agent. Both allow you to perform exactly the same tasks.

2. In the right pane, click theNew button. TheNew XACML Policywindow is displayed.

- 18 -



ViewDS Access Sentinel: Installation & ReferenceGuide

3. In the Label box, enter a name, such as 'test'.
4. ClickSave to accept the defaults. A new policy is listed in the Policy Versions tab.

5. To remove the XACMLAccessControl Domain, right-click theDeltawing entry
followed byRemove XACML Access Control Domain.

Setting local file security
The in-application help is displayed in the user's browser. The browser must allow javascript
to interact with the local file system for hypertext links in the help to work. Thismay require
additional configuration of the browser.

If the hypertext links in the Authorization PolicyManager help do not work in the Chrome
browser for Windows:

1. Close all instances of Chrome.

2. Enter at the command line: chrome.exe --allow-file-access-from-file

For Firefox:

1. In the browser's address bar, enter about:config and press Enter. The browser’s
preferences are displayed.

2. In the Search box, enter privacy.file_unique_origin.

3. Set the Value of privacy.file_unique_origin to false.

Deploying the IIS PEP
The IIS PEP is an IIS managedmodule that allows aMicrosoft IIS web server to delegate
authorization of HTTP requests to Access Sentinel. It can be deployed to protect access to
specific sets of pages in a site.

Deploying the IIS PEPmodule involves:

l Enabling .NET extensibility for IIS

l Adding the PEP to the IIS

l Configuring the IIS PEP

l Configuring for anonymous access

l Testing the deployment

Enabling .NET extensibility for IIS
To enable .NET extensibility for IIS onWindows 10:

1. From theWindowsControl Panel, selectPrograms and Features.
2. ClickTurn Windows features on or off. TheWindows Featureswindow is displayed.

3. Expand Internet Information Services, thenWorld Wide Web Services, and
Application Development Features.

4. Select the .NET Extensibility 3.5 checkbox.

- 19 -



Installing and configuring

To enable .NET extensibility for IIS onWindowsServer 2019:

1. Open Server Manager.

2. From the Dashboard, clickAdd roles and features. The Add Roles and Features
Wizard opens.

3. ClickNext until the Features list is displayed.
4. Select .NET Framework 3.5 Features then clickNext followed by Install.

Adding the PEP to IIS
To add the PEPmodule to a website:

1. From the Access Sentinel distributionmedia, copy IISpepModule.dll and
pdpLiaison.dll to the site's bin folder (create a bin folder if one does not exist).

2. Add IISpepModule.dll to the required website as amanagedmodule. For
example, to add the PEP as amanagedmodule through IIS Manager:

a. From Internet Information Services (IIS) Manager, click the required website in the
Connections pane.

b. In the central pane, double-clickModules. Themodules are listed.
c. In theActions pane on the right, clickAdd Managed Module. The AddManaged

Module window is displayed.

d. In theName box, enter Access Sentinel PEP.

e. In the Type box, enter IISpepModule.PEP, then clickOK.

Configuring the IIS PEP
To configure the IIS PEP:

1. Create a folder for the PEP’s log file (for example, c:\peplog).

2. Grant full access to the PEP’s log file:

a. FromWindowsExplorer, right-click the log-file folder (for example, c:\peplog)
and clickProperties. A Properties window is displayed.

b. Click theSecurity tab.
c. Click theEdit button. The Permissionswindow is displayed.

d. Click theAdd button. The Select Users or Groupswindow is displayed.

e. In the text box, enter Network Service and then clickOK. The window closes and
NETWORK SERVICE is added to the Security tab.

f. ClickNETWORK SERVICE followed by theAllow checkbox for Full control.

g. ClickApply and thenOK.
3. From the Access Sentinel distributionmedia, copy pepConfig.txt to the IIS folder

(for example, c:\Windows\System32\inetsrv\).

4. Set the IIS PEP configuration-file parameters (see below) in the pepConfig.txt file
as required.

- 20 -



ViewDS Access Sentinel: Installation & ReferenceGuide

IIS PEP configuration-file parameters

The IIS PEP has a configuration file with the following parameters:

XACMLHost The host name or IP address of the host on which the ViewDS DSA is
running. For example: localhost

XACMLPort The soapAddress on the ViewDS DSA where the PDP listens for
authorization decision requests (seeModifying the SOAP address).
Default: 3009

XACMLTrace This parameter is required to be on as part of enabling tracing (see
Tracing decisionmaking).

With tracing enabled, the PEP sends authorization decision requests
that enable tracing of the policies evaluated by the PDP in order to
generate an authorization decision response.

The PDP writes tracing information to its query log; and the PEP writes
tracing information in the authorization decision response to its log
folder (identified by the LogPath parameter). Default: off

LogSwitch When this parameter is on, the PEP logs all authorization decision
requests and responses exchanged with the PDP to the log folder
(identified by the LogPath parameter).

LogPath The location of the PEP’s log files. For example: c:\peplog

NotApplicable The PEP’s action if it receives ‘not applicable’ in an authorization
decision response from the PDP. If the parameter is set to allow, the
user will be granted access to the resources they are attempting to
access; if it is set to intercept, theywill be denied access.
Advised: intercept

Indeterminate The PEP’s action if it receives ‘indeterminate’ in an authorization
decision response from the PDP. If the parameter is set to allow, the
user will be granted access to the resources they are attempting to
access; if it is set to intercept, theywill be denied access.
Advised: intercept

NoResponse The PEP’s action if receives no response to an authorization decision
request. If the parameter is set to allow, the user will be granted access
to the resources they are attempting to access; if it is set to intercept,
theywill be denied access.
Advised: intercept

The following is an example configuration file:
XACMLHost localhostXACMLPort 3009XACMLTrace offLogPath

c:\peplogNotApplicable interceptIndeterminate

interceptNoResponse intercept

- 21 -



Installing and configuring

Configuring for anonymous access
To configure the ViewDS DSA for access by the PEP as an anonymous user:

1. Open the ViewDSManagement Agent.

2. At the bottom of the left pane, clickServer View.
3. In the left pane, click the appropriate server.

4. In the right pane, click the Trust tab.
5. Within the Trust tab, click theAnonymous Privilege tab.
6. Select theXACML Protocol checkbox.
7. In theAccess Rights box, click read.
8. ClickSave.

Test the deployment
To test the deployment:

1. Attempt to access the protected website. You should be denied access, which is the
default behaviour if no XACML policy has been defined.

2. Optionally, if required, perform the task Tracing decisionmaking.

3. Define an XACML policy by following the HTTP PEP tutorial.

Deploying the Apache PEP
The Apache PEP protects web pages hosted by an Apache web server, which implement
HTTP authentication. It requires Apache HTTP Server version 2.2.

Deploying the Apache PEPmodule involves:

l Installing and configuring the Apache PEP

l Configuring for anonymous access

l Testing the deployment

Installing and configuring the Apache PEP
1. From the Access Sentinel distributionmedia, copy the PEPmodule mod_authz_

xacml.so to the Apachemodules directory. For Windows thismay be, for example,
\Program Files (x86)\Apache Software

Foundation\Apache2.2\modules).

2. In the Apache configuration file, add a LoadModule directive for the Apache PEP:
modules/mod_authz_xacml.so

3. Each directory that hasHTTP authentication and will be protected by the Apache PEP
requires the following parameters in the Apache configuration file:
l XACMLHost "localhost"

l XACMLPort 3009

- 22 -



ViewDS Access Sentinel: Installation & ReferenceGuide

l XACMLTrace on

l Require permit

The parameters are described in the next subsection below.

Apache PEP configuration parameters

The following Apache PEP configuration parameters can appear in the Apache
configuration file:

XACMLHost The host name of the ViewDS server (includes the PDP).

XACMLPort The soapAddress on the ViewDS server (by default, 3009) where the
PDP listens for authorization decision requests (seeModifying the
SOAP address).

XACMLTrace Optional and determineswhether the PEP’s authorization decision
requests will switch on decision tracing in the PDP. (The tracing is
written to the server’s query log.)

Require per-

mit
Is required to invoke PEP. It is a standard Apache directive, but the
value permit is specific to Access Sentinel.

XACML Author-

itative
Optional and determineswhether thismodule is the authoritative
authorisationmodule. When absent, the default is on (the
recommended setting).

Example configuration

This example configuration applies the Apache PEP to a directory that has basic
authentication in aWindows environment:

LoadModule authz_xacml_module “modules/mod_authz_xacml.so”

<IfModule authz_xacml_module>

<Directory "<path to directory with basic HTTP authentication>">

AuthType Basic

AuthName "Basic"

AuthUserFile "<path to directory with basic HTTP auth>/users"

XACMLHost "localhost"

XACMLPort 3009

XACMLTrace on

Require permit

AllowOverride None

Options FollowSymLinks

</Directory>

</IfModule>

- 23 -



Installing and configuring

This example references a users file, which is described in Apache’s documentation for
HTTP basic authentication (see http://httpd.apache.org/docs/2.2/mod/ mod_authn_file.html
and http://httpd.apache.org/docs/2.2/mod/ mod_authz_groupfile.html).

Configuring for anonymous access
To configure the ViewDS DSA for access by the PEP as an anonymous user:

1. Open the ViewDSManagement Agent.

2. At the bottom of the left pane, clickServer View.
3. In the left pane, click the appropriate server.

4. In the right pane, click the Trust tab.
5. Within the Trust tab, click theAnonymous Privilege tab.
6. Select theXACML Protocol checkbox.
7. In theAccess Rights box, click read.
8. ClickSave.

Test the deployment
To test the deployment:

1. Attempt to access the protected website. You should be denied access, which is the
default behaviour if no XACML policy has been defined.

2. Optionally, if required, perform the task Tracing decisionmaking.

3. Define an XACML policy by following the HTTP PEP tutorial.

Modifying the SOAP address
The IIS and Apache PEPs exchange authorization decision requests and responseswith
the PDP. Each is wrapped in a SAML assertion, inserted into a SOAP envelope, and then
added to the payload of an HTTP request or response.

The PDP listens for authorization decision requests on the SOAP address declared in the
ViewDS server’s configuration. By default, the SOAP address is 3009 (the server’s
baseport address, 3000, plus 9).

Tomodify the SOAP address:

1. Start the ViewDSManagement Agent.

2. At the bottom of the left pane, clickServer View.
3. In the left pane, click the appropriate server.

4. In the right pane, click theConfiguration tab.
5. Within theConfiguration tab, clickAddresses.
6. Double-click in theValue column next toSOAP Address.
7. Enter the appropriate address and then clickSet.

- 24 -

http://httpd.apache.org/docs/2.2/mod/mod_authn_file.html
http://httpd.apache.org/docs/2.2/mod/mod_authz_groupfile.html


ViewDS Access Sentinel: Installation & ReferenceGuide

Tracing decision making
When the PEP sends an authorization decision request and tracing is enabled:

l The PDP generates a trace of the policies evaluated and the result of each. It logs the
trace in its query log (see the ViewDSManagement Agent help topic,Working with the
query log).

l The PDP also returns the trace in its authorization decision response. The PEP then logs
the trace in the directory identified by the PEP’s configuration-file parameter LogPath
This functionality is currently only available for the IIS PEP.

To enable tracing:

1. Set the PEP’s configuration-file parameter XACMLTrace to on (see the IIS PEP
configuration parameters or Apache PEP configuration parameters).

2. Enable the DSA’s query log:

a. From the ViewDSManagement Agent, click theServer View button.

b. In the left pane, click your DSA.

c. In the right pane, click theConfiguration tab followed byRuntime Settings.
d. For the 'Query logging’ setting, select on in theCurrent andOn Start Up columns.
e. ClickSet.

3. Define an XACML attribute with the following settings:

l Label equals tracing (for example)

l Category equals urn:oasis:names:tc:xacml:3.0: attribute-
category:action

l Identifier equals urn:oasis:names:tc:xacml:1.0: action:action-id

l Data Type equals anyURI

4. Create a new rule within the policy. The rule's condition should be that the above
XACML attribute is equal to http://viewDS.com/xacml/environment/trace

- 25 -





ViewDS Access Sentinel: Installation & ReferenceGuide

About XACML

framework and policy

This section provides the background information you will need to write XACML policy.

It describes the following:

l XACML components

l XACML terms to remember

l Introduction to XACML policy

l Attribute-based versus role-based access control policies

l Obligations and advice

l Delegation

XACML components
We’ll start by looking at how Access Sentinel's implementation of XACML can be used to
protect web pages.

Consider the following illustration.

The steps shown in the illustration are described below.

- 27 -



About XACML framework and policy

1. A user attempts to view aweb page hosted by a web server.

2. The web server asks the Policy Enforcement Point (PEP) to form an ‘authorization
decision request’.

3. The PEP sends the ‘authorization decision request’ to the Policy Decision Point (PDP).
The authorization decision request includes XACML attributes that identify, among
other things, the user and the web page they are attempting to access. (See XACML
attributes provided by a PEP for details.)

4. The Policy Decision Point (PDP) determineswhether access should be permitted. It
does so by accessing the appropriate XACML policy. The policy instructs the PDP to
consider which web page is being accessed and bywhich user. The user is identified
according to directory attributes in the Policy Information Point (PIP).

5. The PDP returns an ‘authorization decision response’ to the PEP.

6. The web server acts on the decision to permit or deny access to the web page.

XACML terms to remember
There are a couple of important XACML terms to remember:

l Target – the set of resources protected by the policy.

l Resource – the specific item (e.g. web page) within the target that the subject is
attempting to access.

l Subject – the user attempting to access a resource.

l Action – the action attempted by the subject (e.g. view a web page).

These terms are illustrated below:

Introduction to XACML policy
The ViewDS implementation of an XACML policy comprises:

l XACMLAccessControl Domain

l Status and version

l XACML attributes

l Rules

l Precedence

Each is described below.

- 28 -



ViewDS Access Sentinel: Installation & ReferenceGuide

XACML Access Control Domain
An XACMLAccessControl Domain is a specific area of a DIT that contains one or more
XACML policies.

NOTE: In the ViewDS XACML framework, the default behaviour is to deny access to
the entities within an AccessControl Domain. (This does not apply to administrative
users of the ViewDSManagement Agent, who bypass all access controls.)

For example, when working with the ViewDS directory and the internal PEP, an XACML
AccessControl Domain is an area of the directory where the XACML access controls apply.
The entry at the top of the domain is termed the access control administrative point. By
default, ViewDS denies access to all entries within the domain.

Status and version
Every XACML policy has a status and version.

A policy can havemultiple versions, each with a unique version number. A version also has
a status that identifies whether it is 'locked' and 'active'.

Only one version of a policy can be 'active’. This is the version that currently applies. You
can therefore test a new version of a policy and then roll-back to a previous version if
necessary.

A 'locked' version cannot bemodified. However, you can create a new version based on an
existing locked version. This offers a level of version control.

Status: active,locked

Version: 1.1

XACML attributes
XACML is based on the concept of attributes.

The PAP uses XACML attributes to identify the subject, resource, action and environment
information within a rule. The PEP sends requestsmade up of XACML attributes to the
PDP to convey information about the subject, resource, action and environment. The PDP
then compares these to attribute values in a policy tomake access decisions.

The XACML standard defines four categories for attributes:

l Subject – identifies the subject attempting to access a particular resource.

l Resource – identifies the resource the subject is attempting to access.

l Action – identifies the action the subject is attempting to perform on the resource (for
example, read, modify).

l Environment – identifies environmental factors such as day of the week and time of day.

It is permissible within the XACML standard for any of these four categories to be sub-
divided or for other new attribute categories to be added.

- 29 -



About XACML framework and policy

For details of the XACML categories and data types of the attributes provided by the PEP,
see XACML attributes provided by a PEP.

For an XACML attribute to be included in policy rules, it must first be declared in the XACML
AccessControl Domain. Declaring an XACML attribute involves giving it a ‘user-friendly’
name. This is important because XACML attributes are identified by long URIs or complex
XPath expressions that are unwieldy when creating rules.

You can declare two different types of attributes: attribute designators and selectors.

Attribute Designators

An attribute designator comprises the Category, AttributeId and DataType URIs
of a particular XACML attribute.

For some XACML attributes, the declaration also includes amapping to a directory attribute
in an entry that uniquely identifies a subject or resource.

Attribute designators allow a policy to specify an attribute value with a given category,
identifier and data type. The PDP will then look for that value in the request, or elsewhere, if
nomatching values can be found in the request (see Attribute look-up).

Attribute Selectors

In addition to XACML attributes, XACML requests can contain XML documents for each
category. For example, an XML document might describe the subject or be the actual
resource being accessed.

Attribute selectors allow a policy to look for attribute values in such XML documents using
XPath queries.

XPath is a language, based on a tree representation of XML documents, which provides the
ability to navigate around the tree and select nodes using a variety of criteria.

An attribute selector comprises a category, data type and an XPath expression. Together
these are used to resolve a set of attribute values in the request document.

Attribute selectors can be used within XACML policy expressions in the sameway as
attribute descriptors. For example, consider an XACML request that contains an XML
document which is the resource a user is attempting to access. An attribute selector can be
configured with an XPath expression to find elements in the document named
PublicationDate. An XACML policy can then include a condition that denies access if the
PublicationDate ismore than five years ago.

The following are currently supported:

l the definition of attribute selectors within the Authorization PolicyManager (and the
ViewDSManagement Agent)

l the ability to use and evaluate attribute selectors within XACML policies

However, attribute selectors are not applicable to the following as they do not make use of
XML documents within authorization decision requests:

- 30 -



ViewDS Access Sentinel: Installation & ReferenceGuide

l the ViewDS XACML framework

l the HTTP PEPS (IIS and Apache)

Rules
Every XACML policy includes a rule.

A rule allows the Policy Decision Point (PDP) to determine whether a subject should be
permitted or denied access to a resource. Each has a target, scope, an effect (permit or
deny access) and a condition.

The target identifies the resources protected by the policy. The scope is used when defining
policy for hierarchical resources, such as directory entries. It determineswhether the policy
applies to a single target resource, or to a target resource and all its subordinates.

The condition incorporates XACML attributeswhich the PDP uses to identify the resource
and subject. It determineswhether the rule’s effect should be applied.

A simple example rule is shown below.

Rule
Target: Documents
Scope: subtree
Effect: Permit access (if the following condition is true)
Condition:
resource has attribute webpage = 'index.html' AND
subject has attribute role = Board Member AND
action = READ

The condition is true if the subject is a BoardMember attempting to view the resource
’index.html’.

Precedence
By default the rule in an XACML policy has a precedence of 0 (zero).

When the Policy Decision Point (PDP) receives an ‘authorization decision request’ it
evaluates the rules with a precedence of 0. This gives a result of either 'permit', 'deny',
'indeterminate' or 'not applicable'.

When the result is 'not applicable', the PDP then evaluates rules with a precedence of 1. If
this evaluation returns the same result, the PDP thenmoves onto rules with a precedence
of 2, and so on. At any stage, if the result is anything but 'not applicable', the evaluation ends
and PDP returns the result to the Policy Enforcement Point (PEP).

A rule's precedence can be set through either the ViewDSManagement Agent or
Authorization PolicyManager. It can be set to zero or any integer value (they do not need to
be sequential) in order to override rules with a higher precedence value.

- 31 -



About XACML framework and policy

In summary, a rule with a precedence of zero overrides a policy with a precedence of 1, for
example.

Attribute-based versus role-based access

control policies
The viewDS XACML framework supports both attribute-based access control (ABAC) and
role-based access control (RBAC) policies.

In ABAC, attributes associated with the subject, action, resource or environment are used
to construct conditions. These conditions compare attributes to static values or to one
another (relation-based access control) in order to establish if access should be permitted or
denied.

Like ABAC, RBAC uses attributes to construct conditions. However, a separate condition
that identifies a user’s role is also included.

For example, an ABAC policymay look like this:

Permit if the following condition is met:

action = read AND

resource = document-xyz AND

subject’s title = ‘Sales Executive’ AND

subject’s age > 18

An equivalent RBAC policy that separates attribute conditions and role conditionsmay look
like this:

Permit if the following condition is met:

action = read AND

resource = document-xyz AND

subject’s age > 18

AND the following role condition is met:

subject’s role = Sales Executive

Additionally, RBAC makes use of a role hierarchy for permission inheritance. Thismeans
that access rights for a given user are evaluated based on their allocated role and any
permissions they inherit from subordinate roles within the role hierarchy.

NOTE:Only permit rules are inherited.

For example, consider the situation illustrated below in which the Sales Executive role has a
subordinate role Employee. Using RBAC, a Sales Executive will be evaluated using policies
that apply to their role directly aswell as any permit rules for the junior role of Employee.

- 32 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Thismeans that a Sales Executive who is over 18 years old would be able to read
document-xyz, read the Sales Forecast Report and (due to role hierarchy inheritance) have
access to the Leave FormDocument.

Attribute look-up
The ViewDS XACML framework is able to look-up subject and resource attributes that are
not provided in an authorization decision request.

Subject attributes

If subject attributes are not provided in an authorization decision request, the Policy
Decision Point (PDP) will attempt to look them up in the Policy Information Point (the
ViewDS directory). For this to occur the request must include the following XACML
attribute:
urn:oasis:names:tc:xacml:1.0:subject:subject-id

The PDP will look up the subject-id XACML attribute definition fromwithin the XACML
AccessControl Domain to identify if it has beenmapped to a directory attribute. If it has,
then the PDP will used this directory attribute to search ViewDS for the subject. If the
subject-id does not have a directory attributemapping, it will use the following defaults
based on the subject-id data type (see XACMLConfiguration Parameters):

l String – the Policy Decision Point looks for a directory entry whose viewDSUserName
attribute equals the string value specified by subject-id.

l x500Name – the Policy Decision Point looks for a directory entry whose LDA
Distinguished Name equals the specified X500 name specified by subject-id.

l rfc822Name – the Policy Decision Point looks for a directory entry that has a value of the
attribute type identified by the rfc822Name-attribute that is configured within the XACML
Configuration setting.

The PDP only expects to find a single subject entry within ViewDS. If multiple entries are
located it will consider the situation to be ambiguous and will not use any of the subject
attributes fromwithin the PIP.

- 33 -



About XACML framework and policy

Resource attributes

If required resource attributes are not provided in an authorization decision request, the
PDP will attempt to look them up in the PIP (the ViewDS directory). For this to occur the
request must include the following XACML attribute:
urn:oasis:names:tc:xacml:1.0:resource:resource-id

The PDP will look up the resource-id XACML attribute definition fromwithin the XACML
AccessControl Domain to identify if it has beenmapped to a directory attribute. If it has,
then the PDP will used this directory attribute to search ViewDS for the resource.

The PDP only expects to find a single resource entry within ViewDS. If multiple entries are
located it will consider the situation to be ambiguous and will not use any of the resource
attributes fromwithin the PIP.

Role management
To facilitate RBAC, the ViewDS XACML framework allows you to define andmanage
discrete roles and role hierarchies for a given access control domain using the Authorization
PolicyManager (and the ViewDSManagement Agent).

Once defined, these roles can be used as static or dynamic role values and included in
XACML access control policies (including ABAC policies).

Static roles are obtained from directory entries or XACML requests. Whereas, dynamic
roles are determined by performing some sort of run-time evaluation.

Role enablement
Role enablement extends the ViewDS XACML framework to support dynamic roles. The
Authorization PolicyManager (and the ViewDSManagement Agent) can be used to define
role enablement rules in the form of XACML policies. These rules harness the power of
XACML to determine user roles dynamically. For example:

User role = ‘Acme-Employee’ if email address endswith ‘@acme.com’

User role = ‘Acme-External-Contractor’ if email address endswith@third-
party-contractors.acme.com’

Obligations and advice
Obligations and advice are features of XACML 3.0 that have been implemented in ViewDS
so that it can be used to convey directives to applications that define themwithin an XACML
response. An obligation is amandatory directive whereas advice is optional.

To illustrate, an obligation to add a log entrymight be associated with permitting access to a
highly restricted resource. In this case, when the application is told that access is permitted it
is also told that it is obliged to log the access for auditing purposes. If the application cannot
perform the logging operation, it will refuse access to the resource.

Advice is similar to an obligation, except execution of advice by the application is optional.

- 34 -



ViewDS Access Sentinel: Installation & ReferenceGuide

For example an XACML responsemight deny access to a document on the weekend and
comewith the advice to show amessage to the user that access is only available on week
days.

The specific obligations and advice implemented by a given application are defined by that
application. Access Sentinel merely enables you to associate such obligations and advice
with authorization rules and so use them in access control decisions.

NOTE: Neither ViewDS nor the HTTP PEPs define any obligations or advice for use
in creating access control policy. So, if a policy that grants access contains an
obligation, then ViewDS and the HTTP PEPswill not permit the operation due to
their inability to process the obligation. Both PEPs ignore advice.

Delegation
XACML policy has two broad categories:

l Access policy, which declares rules that determine whether ViewDS grants or denies
access to a resource.

l Administrative policy, which declares rules that authorize access policies.

ViewDS ignores an access policy unless:

l it waswritten by an administrator; or

l it is authorized by a chain of administrative policies, where the final policy in the chain was
written by an administrator.

The policy is then deemed ‘trusted’.

Only an administrator canmanage trusted policies. An administrator is a trusted user of the
Authorization PolicyManager or ViewDSManagement Agent.

However, an administrator can delegate authorization tomanage trusted policy. The
administration of policies can therefore be decentralised by delegating trust to users of the
Authorization PolicyManager.

The ViewDS XACML framework provides two ways of delegating trust:

l Evaluation-time delegation

l Composition-time delegation

Each is discussed below.

Evaluation-time delegation
An administrative policy can be implemented that delegates trust to a non-administrative
user. The user would be trusted tomaintain policies, but within a specified scope and under
specified constraints.

To illustrate, an administrative policymight authorize policies written by a SalesManager,
provided they apply to the ‘Sales andMarketing’ area of the directory.

- 35 -



About XACML framework and policy

Later, when the PDP evaluates an authorization request to access a resource, it considers
all relevant policy, including those relating to delegation. Therefore, with the above example,
the PDP would determine whether it should apply the policies written by a SalesManager. If
the authorization request relates to the ‘Sales andMarketing’ area of the directory, then the
PDP would apply the SalesManager’s policy. Otherwise, the PDP would simply ignore the
SalesManager’s policy.

Composition-time delegation
This is another way for an administrator to delegate trust to a non-administrative user.

An administrator can create an access policy that delegates administrator rights within an
XACMLAccessControl Domain or within anXACMLAccessControl Subdomain. Each
option is described below.

XACML Access Control Domain

To illustrate composition-time delegation within a domain, consider the following illustration.

In this example an administrator has created:

l anXACMLAccessControl Domain at the Deltawing entry

And written an access policy that:

l delegates trust by permitting the action ‘AssertTrust’ by a non-administrative user,
Margaret Hunter

Consequently, after starting the Authorization PolicyManager with the ‘-trusted’ switch,
Margaret Hunter would be considered an administrator for the purpose of managing policy
within the XACMLAccessControl Domain.

There would, however, be no restrictions on the non-administrative user. Margaret Hunter
would be able tomodify every aspect of the access controls in the domain: rules, attributes,
versions, policies, roles, and named expressions.

The only way to impose a restriction is to use precedence. For example, the administrator
could amend the access policy so that the non-administrative user can onlymanage policy
containing rules with a precedence greater than 1. Therefore, a rule with a precedence of 0

- 36 -



ViewDS Access Sentinel: Installation & ReferenceGuide

or 1 could only bemodified by an administrator, and would always override thosemanaged
by the non-administrative user.

This restriction would only apply to a policy’s rule as attributes, versions, roles and named
expressions cannot be assigned a precedence.

XACML Access Control Subdomain

To illustrate composition-time delegation within a subdomain, consider the following
illustration.

As in the previous example, the administrator has created anXACMLAccessControl
Domain at the Deltawing entry. However, this time, they have also created:

l anXACMLAccessControl Subdomain at the Executive entry

The administrator has taken the same access policy shown in the previous example, and
this time applied it to the XACMLAccessControl Subdomain.

Consequently, after starting the Authorization PolicyManager with the ‘-trusted’ switch,
Margaret Hunter would be considered an administrator for the purpose of managing policy
within the subdomain.

Aswell as any restrictions declared by the access policy, there are inherent restrictions
imposed by this type of delegation. The non-administrative user can create versions, policy
and named expressionswithin the subdomain, but they cannot create attribute and role
definitions. The only attribute and role definitions available to the non-administrative user
are those inherited by the sub-domain.

- 37 -





ViewDS Access Sentinel: Installation & ReferenceGuide

XACML tutorials

This chapter takes you through the steps to define and apply XACML policy to a resource. It
includes two tutorials: HTTP PEP tutorial and ViewDS PEP tutorial.

HTTP PEP tutorial
This tutorial takes you through the steps to define and apply an XACML policy to web pages
hosted by either an Apache or IIS web server.

The tutorial includes the following stages:

1. Requirements

2. Set the policy base object

3. Create tutorial files and configure the web server

4. Declare XACML attributes

5. Create a policy

6. Define the first rule

7. Define the second rule

8. Define the third rule

9. Activate the policy

10. Test the policy

11. Lock the policy

Requirements
A policy is required to control user access to a set of web pageswith HTTP authentication
and hosted by an Apache or IIS server.

The set of web pages is as follows:
/xacml/index.html

/xacml/restricted/index.html

/xacml/restricted/restricted.html

/xacml/secret/index.html

/xacml/secret/secret.html

HTTP authentication is also required for users with the following usernames: ‘mhunter’,
‘asherma’ and ‘rturnbu’. All should have the same password: ‘testpass’.

- 39 -



XACML tutorials

The policy will control access as follows:

1. Permit all users access to all index.html files

2. Permit only 'mhunter’ and 'asherma’ access to restricted.html

3. Permit only 'mhunter’ access to secret.html

The last requirement is illustrated below.

When a user (subject) attempts to access a webpage (resource), the Apache Policy
Enforcement Point (PEP) will send an authorization decision request to the Policy Decision
Point (PDP). The request includes values that identify, among other things, the subject, the
resource and the attempted action. These values are held in XACML attributes.

XACML attributes

Before an XACML attribute can be used by the PAP, it must first be declared in the XACML
AccessControl Domain.

Each declaration has a ‘Label’ that will appear in a rule’s condition, and a XACML category,
identifier and type. The combination of category, identifier and type dictates the value
returned by the PEP and assigned to the XACML attribute.

The XACML attribute declarations required in this tutorial are as follows.

Label XACML attribute category XACML attribute identifier
XACML
data
type

User
Name

urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:1.0:subject:subject-
id

string

URL
Path

urn:oasis:names:tc:xacml:3.0:attribute-
category:resource

http://viewds.com/http/resource/path string

NOTE: An XACML attribute's category corresponds to its purpose, as shown in the
previous illustration.

Rules

Each rule has a target, scope, effect and condition. The effect of all three rules in this tutorial
will be to permit access, and their targets will be either paths or webpages. The target and
scope are arbitrary as they only apply to the internal PEP.

The effect (permit) and condition for each rule in this tutorial are shown below.

- 40 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Rule 1:
Permit (if the following condition is true)
URL Path contains 'index.html'

Rule 2:
Permit (if the following condition is true)
URL Path contains 'restricted.html' AND
(User Name = 'asherma’ OR User Name = 'mhunter')

Rule 3:
Permit (if the following condition is true)
URL Path contains 'secret.html' AND
User Name = 'mhunter'

Set the policy base object
The policy base object is the root of the directory subtree where the PDP searches for
XACML policy. In this tutorial, the policy base object is the Deltawing entry:

1. In the ViewDSManagement Agent, clickServer View.
2. In the left pane, click the appropriate DSA.

3. In the right pane, click theXACML Config tab.
4. Click theBrowse button next to thePolicy Base Object box. The DIT Browser is

displayed.

5. Click theDeltawing entry (the first entry below theRoot) and then clickOK.
6. At the bottom of theXACML Config tab, clickSet XACML Configuration.

Create tutorial files and configure the web server
Next, copy the files and set up your web server for this tutorial:

1. Create the following directories and files in the appropriate location for your web server
(for example, below the htdocs directory for Apache, or below wwwroot for IIS):
/xacml/index.html

/xacml/restricted/index.html

/xacml/restricted/restricted.html

/xacml/secret/index.html

2. Configure your web server for HTTP authentication on the above files. Apply HTTP
authentication for users with the following usernames: ‘mhunter’, ‘asherma’ and
‘rturnbu’. All should have the same password: ‘testpass’.

For information about configuring a web server for a PEP, see either Deploying the
Apache PEP or Deploying the IIS PEP.

- 41 -



XACML tutorials

Create an XACML Access Control Domain
An XACMLAccessControl Domain is a specific area of a DIT that contains one or more
XACML policies. The entry at the top of the domain is termed the access control
administrative point.

To create an XACMLAccessControl Domain:

1. At the bottom of the left pane, clickServer View.

2. In the left pane, click your ViewDS server. The Status tab displays the status of your
ViewDS server. The ViewDS server must be running and connected to the VMA.

3. In the bottom left pane, clickGlobal DIT View.

4. In the left pane, expand theDeltawing entry.

5. Right-click theDeltawing entry. A submenu is displayed.

6. From the submenu, clickAdd XACML Access Control Domain. The XACML
AC tab is added to the right pane.

Declare XACML attributes
To declare the XACML attributes for the tutorial's policy:

1. In the right pane, click theXACML AC tab. The tab contains the Policy Versions,
Attributes and Roles sub-tabs.

2. Click theAttributes tab.

3. At the bottom of the right pane, click theNew button. The XACMLAttribute window
is displayed.

4. In the Label box, enter URL Path. This is the name that will appear in the rule.

5. In the Category box, clickurn:oasis:names:tc:xacml:3.0:attribute-
category:resource. The Identifier box defaults to
urn:oasis:names:tc:xacml:1.0: microprocessor-id, and the Data
Type defaults to string.

6. In the Identifier box, delete the default value and enter the following:
http://viewds.com/http/resource/path

7. ClickSave. The XACML attribute is added to the Attributes tab.

8. Repeat the above steps to declare the following XACML attribute:

Label Category Identifier Data
Type

User
Name

urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:1.0:subject:subject-
id

string

- 42 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Note that the above information is also in XACML attributes provided by an HTTP PEP.

NOTE: Every attribute in an XACML domainmust have a unique combination of
Category, Identifier and Data Type.

Create a policy
To create the policy:

1. In the right pane, click theXACML AC tab and then thePolicy Versions tab.
2. In the right pane, clickVersion Management followed byNew Policy Version. The

XACMLPolicy Version window is displayed.

3. Accept the default values by clickingSave. A new policy is added to the screen.

NOTE: The policy ismarked as open, which indicates that it can bemodified. Once a
policy has been locked it cannot bemodified. You can, however, create a new policy
based on it.

Define the first rule
To define the first rule:

1. With 'ABAC Rules' and 'Access' selected in the filter boxes, click theNew icon. The
XACML Rulewindow is displayed. It allows you to define a rule for the current policy.

2. In the Label box, enter Access to index.html.

3. Optionally, enter a longerDescription of the rule.
4. Click theEdit button. The XACMLExpression window is displayed.

XACML Expression window

This window allows you to define a rule's conditions.

- 43 -



XACML tutorials

The window has two areas:

l Expression Tree
This is the window’smain work area and allows you to build expressions in a tree format.

l Text pane
This area shows the contents of the Expression Tree in a plain text format.

There are five sets of buttons:

l FunctionsDashboard
These buttons allow you to add one of the frequently used functions to the Expression
Tree. The functions are also available through the function buttons.

l Save and Exit button
This button allows you save the Expression Tree and exit the Expression Builder
window.

l Attribute buttons
These buttons allow you to add XACML attributes to the Expression Tree. Only the
XACML attributes declared in the current AccessControl Domain are available. There is
a button for each category of XACML attribute: subject, resource, action, environment
and other attributes.

l Font Setting button
This button allows you to change the font for the attributes, values, functions and named
expressions displayed in the text pane.

- 44 -



ViewDS Access Sentinel: Installation & ReferenceGuide

l Named Expression button
This button allows you to add a named expressions to the Expression Tree. Only the
named expressions defined in the current AccessControl Domain are available.

l Function buttons
These buttons allow you to add a function to the Expression Tree. There are nine
function categories: Boolean, Relational, XPath, String, Arithmetic, Bag, Set, Date and
Time, and Conversion.

Defining the condition

Each rule has a condition comprising one or more expressions declared in an expression
tree.

The condition for the first rule in this tutorial has the following expression:

URLPath contains ‘index.html’

Every expression has a function and XACML attributes. The function is contains and the
XACML attribute is Resource Path, and is represented in the expression tree as follows:

To define the first rule's condition:

1. Click theString Functions button. A list of functions is displayed.

2. Drag and drop the contains function onto the not-set node in the expression tree. The
contains function is added to the tree with two not-set nodes below it.

3. Double-click the first not-set node. The String Editor window is displayed.

4. In the Value box, enter index.html and clickOK.

- 45 -



XACML tutorials

5. Click theResource Attributes button.

6. Drag and dropURL Path onto the remaining not-set node.
7. ClickSave and Exit. The XACMLExpression window closes and the XACMLRule

window is displayed.

8. ClickSave. The rule is displayed in the Policy Versions tab.

- 46 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Define the second rule
The second rule’s condition is as follows:

URL Path contains 'restricted.html' AND
(User Name = 'asherma' OR User Name = 'mhunter')

The first expression is very similar to the first rule. The second is slightlymore complex, and
for the sake of an example you will define it as a named expression.

A named expression is an expression that is saved and can then be reused in different rules.
If youmodify a named expression, then the change will affect every rule it appears in.

The first expression and the named expression will be tied together by a Boolean 'and'
function to form the second rule.

To define the named expression

1. In the right pane, click thePolicy Versions tab.
2. In the first filter box, clickNamed Expressions. The named expressions are listed in

the summary area of the tab.

3. Click theNew icon. The XACMLNamed Expression window is displayed.

4. In theName box, enter ashermaOR mhunter.

5. Click theEdit button. The XACMLExpression window is displayed.

6. Drag and drop the | function from the FunctionsDashboard onto the not-set node at
the top of the Expression Tree. The function is added to the expression tree with two
empty nodes below it.

7. Drag and drop the = function from the FunctionsDashboard onto the first not-set node.
The function is added to the expression tree with two empty nodes below it.

- 47 -



XACML tutorials

8. Click theSubject Attributes button, then drag and dropUser Name onto the first not-
set node below the = equal function.

9. Double-click the not-set node below User Name. The String Editor window is
displayed.

10. In the Value box, enter asherma and clickOK.

11. Repeat steps 7 through 10 above so that the Expression Tree is as follows:

12. Click theSave and Exit button.
13. ClickSave.

To define the second rule

1. WithABAC Rules andAccess selected in the filter boxes, click theNew icon. The
XACMLRule window is displayed.

2. In the Label box, enter Access to restricted.html.

3. Click theEdit button. The XACMLExpression window is displayed.

4. Drag and drop the& function from the FunctionsDashboard onto the not-set node at
the top of the Expression Tree. The function is added to the expression tree with two
empty nodes below it.

5. Click theString Functions button. A list of functions is displayed.

- 48 -



ViewDS Access Sentinel: Installation & ReferenceGuide

6. Drag and drop the contains function onto the first not-set node in the expression tree.
The function is added to the tree with two not-set nodes below it.

7. Double-click the first not-set node. The XACMLValue (String) window is displayed.

8. In theValue box, enter restricted.html and clickOK.

9. Click theResource Attributes button.

10. Drag and dropURL Path onto the not-set node below restricted.html.

11. Click theNamed Expressions button.

12. Drag and drop asherma OR mhunter onto the remaining not-set node.

13. Click theSave and Exit button.
14. Click theSave button.

- 49 -



XACML tutorials

Define the third rule
The third rule’s condition is as follows:

URL Path contains 'secret.html' AND
User Name = 'mhunter'

It is defined in the expression tree as follows:

To define the rule:

1. WithABAC Rules andAccess selected in the filter boxes, click theNewicon. The
XACMLRule window is displayed.

2. In the Label box, enter Access to secret.html.

3. Click theEdit button. The XACMLExpression window is displayed.

4. Drag and drop the& function from the FunctionsDashboard onto the not-set node at
the top of the Expression Tree. The function is added to the expression tree with two
empty nodes below it.

5. Click theString Functions button.
6. Drag and drop the contains function onto the first not-set node in the expression tree.

The function is added to the tree with two not-set nodes below it.

7. Double-click the first not-set node. The String Editor window is displayed.

8. In theValue box, enter secret.html and clickOK.
9. Click theResource Attributes button.

- 50 -



ViewDS Access Sentinel: Installation & ReferenceGuide

10. Drag and dropURL Path onto the not-set node below secret.html.

11. Drag and drop the = function from the FunctionsDashboard onto the remaining not-set
node. The function is added to the expression tree with two empty nodes below it.

12. Click theSubject Attributes button, then click and dragUser Name onto the first not-
set node below the = equal function.

13. Double-click the not-set node below User Name. The String Editor window is
displayed.

14. In theValue box, enter mhunter and clickOK.

15. Click theSave and Exit button.
16. ClickSave.

Activate the policy
For a policy to take effect it must be activated. Only one version of a policy can be active at
any time. This ensures that after writing a new version of a policy, you can activate it at an
appropriate time and also have the option to roll back by activating the previous version if
necessary.

To activate the policy:

1. In thePolicy Versions tab, clickVersion Management followed byActivate. A
warning is displayed.

2. ClickYes. The policy's Status is now Active, Open. This signifies that the rule is in
use (active) but can still bemodified (open).

- 51 -



XACML tutorials

Test the policy
You can test the policy by attempting to access different pages and logging on as different
users when prompted.

For example, you should be able to access:

l http://server/xacml/index.html

with the user name 'rturnbu’

l http://server/xacml/restricted/restricted.html

with the user name 'asherma’

l http://server/xacml/secret/secret.html

with the user name 'mhunter’

But you should be unable to access:

l http://server/xacml/secret/secret.html

with the user name 'asherma’

l http://server/xacml/secret/secret.html

with the user name 'rturnbu’

l http://server/xacml/restricted/restricted.html

with the user name 'rturnbu’

Lock the policy
Once you lock a policy you cannot delete or modify it. You can, however, create a new policy
based on an existing policy by clicking the New button in the Policy Versions tab.

To lock the policy:

1. In thePolicy Versions tab, click theVersion Management button followed byLock.
A warning is displayed.

2. ClickOK. The policy’s Status is now Active, Locked.

- 52 -



ViewDS Access Sentinel: Installation & ReferenceGuide

ViewDS PEP tutorial
This tutorial takes you through the steps required to apply an XACML policy to an area of
the demonstration directory provided with ViewDS, Deltawing.

The tutorial includes the following stages:

1. Requirements

2. Create an XACMLAccessControl Domain

3. Declare XACML attributes

4. Create a policy

5. Define the first rule

6. Define the first rule's condition

7. Define the second rule

8. Define the second rule's condition

9. Activate the policy

10. Test the policy

11. Lock the policy

Requirements
This tutorial's requirement is for a policy that gives one user, Andrew Sherman, the
privileges tomodifymeeting room entries in the Deltawing directory.

Both Andrew Sherman and ameeting room can be identified in the Deltawing directory by
their entries' directory attributes:

l Andrew can be identified by his entry's viewDSUserName attribute which is set to
'asherma’; and

l ameeting room entry can be identified by its businessCategory attribute which is set
to 'Meeting Room’.

When a directory user (subject) attempts tomodify an entry (resource), the Policy
Enforcement Point (PEP) will send an authorization decision request to the Policy Decision
Point. The request includes the values of directory attributes in the subject and resource
entries, plus a value to identify the attempted action. These values are held in XACML
attributes.

- 53 -



XACML tutorials

XACML attributes

Before an XACML attribute can be used by the PAP, it must first be declared in the XACML
AccessControl Domain.

Each declaration has a 'Label' that will appear in a rule’s condition, an XACML category,
andmay also require amapping to a directory attribute.

In this tutorial, the following declarations are required.

Label XACML attribute category XACML attribute identifier
XACML
data
type

User
Name

urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:1.0:subject:subjec
t-id

string

Action urn:oasis:names:tc:xacml:3.0:attribut
e-category:action

urn:oasis:names:tc:xacml:1.0:action:action-id string

Business
Category

urn:oasis:names:tc:xacml:3.0:attribut
e-category:resource

businessCategory (urn:oid:2.5.4.15) string

Note that an XACML attribute’s category corresponds to its purpose, as shown in the
illustration above.

Also note that Business Category is mapped to the directory attribute
businessCategory through its XACMLAttribute Identifier. However, User Name does
not need to bemapped to a directory attribute because it is one of three values the PEP
provides to identify the subject (see XACML attributes provided by the ViewDS PEP).

The full declarations for the XACML attributes in this tutorial are as follows.

Rules

Two rules are required. The first will permit Andrew Sherman tomodifymeeting room
entries in the directory. The second will permit all users to search and view entries in the
directory. This is necessary because the default behaviour is to deny accesswithin an
AccessControl Domain, unless explicitly permitted.

Rule 1

The first rule’s target, scope, effect and condition are shown below.

Rule 1:
Target: Deltawing
Scope: subtree
Effect: Permit access (if the condition is true)
Condition:
resource has attribute Business Category = 'Meeting Room’ AND
subject has attribute User Name = 'asherma' AND
(Action = 'ModifyEntry’ OR Action = 'AddType' OR
Action = 'RemoveType’ OR Action = 'AddValue’ OR Action = 'RemoveValue’)

- 54 -



ViewDS Access Sentinel: Installation & ReferenceGuide

The rule’s target will be the entry at the root of the Deltawing directory; its scope will be the
entire subordinate subtree below the root entry; and its effect will be to permit access if the
condition is true. The condition will be true when the user with the User Name 'asherma'
(subject) attempts one of the actions on ameeting room entry (resource). Note that omitting
the resource clause wouldmake the rule more general so that it applied it to all entries in the
directory.

Rule 2

The second rule’s target, scope, effect and condition are shown below.

Rule 2:
Target: Deltawing
Scope: subtree
Effect: Permit access (if the condition is true)
Condition:
Action = 'ReadEntry’ OR Action = 'BrowseEntry' OR
Action = 'ReturnDN' OR Action = 'ReadType' OR
Action = 'FilterMatchType' OR Action = 'ReadValue' OR Action = 'FilterMatchValue

It has the same target and scope as the first rule. It also permits access if the condition is
true. The condition will be true when any user (subject) attempts one of the search or read
actions on any directory entry (resource).

Create an XACML Access Control Domain
An XACMLAccessControl Domain is a specific area of a DIT that contains one or more
XACML policies. The entry at the top of the domain is termed the access control
administrative point.

To create an XACMLAccessControl Domain below the Deltawing entry in the
Deltawing directory:

1. At the bottom of the left pane, clickServer View.

2. In the left pane, click your ViewDS server. The Status tab displays the status of your
ViewDS server. Ensure that the ViewDSManagement Agent is connected to your
ViewDS server, and that your ViewDS server is running.

3. In the bottom left pane, clickGlobal DIT View.

4. In the left pane, expand theDeltawing entry.

5. Right-click theDeltawing entry. A submenu is displayed.

6. From the submenu, clickAdd XACML Access Control Domain. The XACML
AC tab is added to the right pane.

- 55 -



XACML tutorials

Declare XACML attributes
To declare the XACML attributes for the tutorial’s policy:

1. In the right pane, click theXACML AC tab. The tab contains the Policy Versions,
Attributes and Roles sub-tabs.

2. Click theAttributes tab.

3. At the bottom of the right pane, clickNew. The XACMLAttribute window is
displayed.

4. In the Label box, enter 'Action'. This is the name that will appear in the rule.

5. In theCategory box, clickurn:oasis:names:tc:xacml:3.0: attribute-
category:action. The content of the Identifier box defaults to
urn:oasis:names:tc:xacml:1.0: action:action-id, and the Data
Type box defaults to string.

6. In thePermitted Values area, click theAdd button. The XACMLValue (String)
window is displayed.

7. In the text box, enter 'ReadEntry' and clickOK. The value is added to the
Permitted Values box.

8. Repeat steps 6 and 7 to define the following as permitted values: ModifyEntry,
BrowseEntry, RemoveType, AddType, AddValue, RemoveValue, ReturnDN,
ReadType, FilterMatchType, ReadValue, FilterMatchValue,
DiscloseValueOnError, DiscloseTypeOnError, DiscloseEntryOnError.

9. ClickSave. The XACML attribute is added to the Attributes tab.

10
.

Repeat steps 3 to 5 to declare the XACML attributes in the following table.

Note that the XACML attribute Business Category is mapped to the directory
attribute businessCategory.

Label Category Identifier Data
Type

User
Name

urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:1.0:subject:subject-
id

string

Business
Category

urn:oasis:names:tc:xacml:3.0:attribute-
category:resource

businessCategory(urn:oid:2.5.4.15) string

Also see XACML attributes provided by the ViewDS PEP.

NOTE: Every attribute in an XACML domainmust have a unique combination of
Category, Identifier and Data Type.

- 56 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Create a policy
To create the policy:

1. In the right pane, click thePolicy Versions tab.
2. In the right pane, click theVersion Management button followed byNew Policy

Version. The XACMLPolicy Version window is displayed.

3. Accept the default values by clickingSave.
The new policy version number and its status is displayed next to the Version
Management button. Note that the policy ismarked as open, which indicates that it can
bemodified. Once a policy has been locked it cannot bemodified . You can, however,
create a new policy based on it.

Define the first rule
To create the first rule in the policy:

1. With 'ABAC Rules' and 'Access' selected in the filter boxes, click theNew button. The
XACMLRule window is displayed. It allows you to define a rule for the current policy.

2. In the Label box, enter Andrew Sherman meeting room access.

3. Enter a shortDescription of the rule, such as Permit Andrew Sherman full

access to meeting room entries.
Note that the Target is set to Deltawing and its Scope is subtree. Hence, the target is all
subtrees and entries subordinate to Deltawing. Also note that the Effect is set to the
default, permit.

4. Click theEdit button. The XACMLExpression window is displayed.

Define the first rule's condition
Each rule has a condition comprising a set of expressions. The condition for the rule in this
tutorial is as follows:

resource has attribute Business Category = ’Meeting Room’ AND
subject has attribute User Name = 'asherma' AND
(Action = 'ModifyEntry’ OR Action = 'AddType’ OR
Action = 'RemoveType’ OR Action = 'AddValue’ OR Action = 'RemoveValue’)

Each line in the condition is an expression.

Defining the first expression

To define the first expression in the rule's condition:

1. The three expressions in the rule's condition are combined by a Boolean 'And' function:
In the XACMLExpression window, drag and drop the& from the FunctionsDashboard
to the node at the top of the expression tree. The function is displayed in the expression
tree with two empty nodes below it.

- 57 -



XACML tutorials

Note: To replace a function, drag and drop another function on top of it.

2. You can now start to define the first expression in the condition. Click theRelational
Functions button. A list of functions is displayed.

3. Drag and drop equal onto the first empty node in the expression tree. The equal
function is added to the tree with two new empty nodes below it.

4. On the left of the window, click theResource Attributes button.

5. Drag and dropBusiness Category onto the fist not-set node below the equal
function.

6. Double-click the not-set node below BusinessCategory. The XACMLValue (String)
window is displayed.

7. In theValue box, enter Meeting Room and then clickOK. The string is added to the
expression.

Now define the second expression in the condition.

- 58 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Defining the second expression

To define the second expression in the condition:

1. From the FunctionsDashboard, drag and drop the = function onto the remaining not-
set node. The equal function is added to the tree with two new empty nodes below it.

2. Click theSubject Attributes button.

3. Drag and dropUser Name onto the fist node below the equal function.

4. Double-click the not-set node below User Name. The XACMLValue (String) window
is displayed.

5. Enter asherma and then clickOK. The string is added to the expression.

Now define the remaining expression.

Defining the remaining expression

To define the remaining expressions:

1. Right-click the and function at the top of the Expression Tree, then clickAdd New
Argument. A new 'not-set' node is added to the bottom of the Expression Tree.

2. From the FunctionsDashboard, drag and drop the | function onto the new not-set
node. The 'or' function is displayed with two new 'not-set' nodes below it.

3. In the Expression Tree, right-click the or function, and then clickAdd New Argument.
A third 'not-set' node is displayed below the 'or' function.

4. Repeat step 3 until there is a total of five 'not-set' nodes below the or function in the
Expression Tree.

5. From the FunctionsDashboard, drag and drop the = function onto the first not-set node
below the 'or' function. The equal function is added to the tree with two new 'not-set'
nodes below it.

6. Click theActions button. The XACML attribute 'Action' is displayed.

- 59 -



XACML tutorials

7. Drag and dropAction onto the fist not-set node below the equal function.

8. Double-click the not-set node below 'Action'. The XACMLValue (Enumerated)
window is displayed.

9. ChooseModifyEntry from the dropdown list of values and clickOK.
10. Repeat steps 5 through 9 to add the following actions to the Expression Tree: AddType,

RemoveType, AddValue, RemoveValue.

Working with named expressions

A named expression is an expression that is saved and can then be reused in different rules.
If youmodify a named expression, the change will affect every rule it appears in.

These steps are not required to define the first rule, but are included in this tutorial to
familiarize you with named expressions:

1. In the Expression Tree, right-click the or function.
2. ClickSave as a Named Expression. A window is displayed.

3. Enter Update Actions and then clickOK.
4. Right-click the or function, then clickDelete. The node is deleted from the tree.

5. Right-click the and function at the top of the Expression Tree, then clickAdd New
Argument. A new 'not-set' node is added.

6. Click theNamed Expressions button. The named expression 'Update Actions' you
just created is displayed.

7. Drag and dropUpdate Actions onto the not-set node in the Expression Tree.

You can view the text version of the named expression by hovering your mouse over it.

8. Click theSave and Exit button. The XACMLExpression window closes and the
condition is displayed in the Condition box of the XACMLRule window.

9. ClickSave. The rule is added to the Rules area of the Policy Versions tab.
10. To view the named expression:

a. In the right pane, click thePolicy Versions tab.
b. In the first filter box, clickNamed Expressions. The named expressions are listed

in the summary area of the tab.

- 60 -



ViewDS Access Sentinel: Installation & ReferenceGuide

c. Click the named expression and then click theOpen button. The XACMLNamed
Expression window is displayed.

d. Click theEdit button. The named expression is displayed in the XACMLExpression
window.

Define the second rule
To create the second rule in the policy:

1. With 'ABAC Rules' and 'Access' selected in the filter boxes, click theNew button. The
XACMLRule window is displayed.

2. In the Label box, enter Search & Read access control.

3. Enter a shortDescription of the rule, such as Permit all users search and

read access to all entries.

4. Click theEdit button.The XACMLExpression window is displayed.

Define the second rule's condition
The second rule's condition is as follows:

Action = 'ReadEntry' OR Action = 'BrowseEntry' OR
Action = 'ReturnDN' OR Action = 'ReadType' OR
Action = 'FilterMatchType' OR Action = 'ReadValue' OR
Action = 'FilterMatchValue' OR Action = 'DiscloseEntryOnError’ OR
Action = 'DiscloseTypeOnError’ OR Action = 'DiscloseValueOnError’

To define these expressions:

1. From the FunctionsDashboard, drag and drop the | function onto the not-set node at
the top of the Expression Tree. The function is added to the Expression Tree with two
empty nodes below it.

2. In the Expression Tree, right-click the or function, then clickAdd New Argument. A
'not-set' node is added to the tree.

3. Repeat the above step until there are ten 'not-set' nodes.

4. From the FunctionsDashboard, drag and drop the = function onto the first not-set node
below the or function. The equal function is added to the tree with two new empty nodes
below it.

5. Click theAction Attributes button. The XACML attribute Action is displayed.
6. Drag and dropAction onto the fist not-set node below the equal function.

7. Double-click the not-set node below Action. The XACMLValue (Enumerated)
window is displayed.

8. ChooseReadEntry from the dropdown list and clickOK.

- 61 -



XACML tutorials

9. Repeat steps 4 and 8 in order to add the following to the remaining not-set nodes:

l Action = BrowseEntry

l Action = ReturnDN

l Action = ReadType

l Action = ReadValue

l Action = FilterMatchValue

l Action = FilterMatchType

l Action = DiscloseEntryOnError

l Action = DiscloseTypeOnError

l Action = DiscloseValueOnError

10. Click theSave and Exit button, followed bySave.

Activate the policy
For a policy to take effect it must be activated. Only one version of a policy can be active at
any time. This ensures that after writing a new version of a policy, you can activate it at an
appropriate time and also have the option to roll back by activating the previous version if
necessary.

To activate the policy:

1. In thePolicy Versions tab, click theVersion Management button followed by
Activate. A warning is displayed.

2. ClickYes. The policy's Status is now Active, Open. This signifies that the rule is in
use (active) but can still bemodified (open).

Test the policy
You can test the policy by attempting tomodify ameeting room entry through Access
Presence, first as Andrew Sherma and then as another user. (For the instructions to
configure for Access Presence, seeConfiguring for Access Presence in theViewDS
Directory: Installation andOperation Guide.)

To test the policy:

1. Open the URL:
http://host:8090/directoryservices/viewds/webdua.cgi

2. Log on with the user name asherma and password testpass.

3. In the drop-down box, clickFunction Search and then clickAccess. The Advanced
Search page is displayed.

4. In the function box, enter meeting room and press the return key. A list of meeting
rooms is displayed.

5. Click the third meeting room in the list. The entry for the SalesMeeting Room is
displayed.

- 62 -



ViewDS Access Sentinel: Installation & ReferenceGuide

6. ClickModify. TheModify page is displayed.
7. Modify the contents of theDescription box and then clickSave.
8. Log off by closing the browser session.

9. Repeat this task from step 1, logging on with the user name rturnbu and password
testpass. This user will not be able tomodify any entries.

- 63 -





ViewDS Access Sentinel: Installation & ReferenceGuide

XACML attributes

provided by a PEP

This appendix describes the attributes provided by each Policy Enforcement Point (PEP):

l XACML attributes provided by an HTTP PEP

l XACML attributes provided by the ViewDS PEP

XACML attributes provided by an HTTP PEP
The attributes are included in an authorization decision request if the corresponding
information is available in the HTTP server request context. They can be declared and
included in an XACML policy.

They are in the following XACML attribute categories:

l Access-subject category

l Action category

l Environment category

l Resource category

l Requesting-machine category

Access-subject category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

The PEP includes the following values in an authorization decision request to identify the
subject (the user attempting to access a site, page or application).

Value XACML attribute identifier XACML data
type

HTTP authenticated user
identifier

urn:oasis:names:tc:xacml: 1.0:subject:subject-id string

HTTP authentication mechanism http://viewds.com/http/subject/auth-type string

HTTP server time (with timezone) urn:oasis:names:tc:xacml: 1.0:subject:request-
time

dateTime

HTTP browser host name http://viewds.com/http/resource/hostname string

HTTP browser IP address http://viewds.com/http/subject/address string

- 65 -



XACML attributes provided by a PEP

Action category
This attribute is in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:action

There is one attribute that identifies the action being attempted by a subject on a resource.

Value XACML attribute identifier XACML data type

HTTP request method urn:oasis:names:tc:xacml:1.0:action:
action-id

string

Environment category
These attributes are in the XACML category:
http://viewds.com/http/environment/redirect-uri

Value XACML attribute identifier XACML data type

Redirection page's query string http://viewds.com/http/environment/ redirect-query string

Redirection page's URL http://viewds.com/http/environment/ redirect-uri anyURI

Resource category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:resource

The PEP includes the following values in an authorization decision request to identify the
resource (the site, page or application that the subject is attempting to access).

Value XACML attribute identifier XACML data
type

URL host name http://viewds.com/http/resource/hostname string

URL urn:oasis:names:tc:xacml:1.0:resource: resource-
id

anyURI

File/resource referenced by
URL

urn:oasis:names:tc:xacml:1.0:resource: resource-
id

string

URL scheme http://viewds.com/http/resource/scheme integer

URL port number http://viewds.com/http/resource/port string

URL path information http://viewds.com/http/resource/path string

URL query string http://viewds.com/http/resource/query string

URL fragment http://viewds.com/http/resource/fragment string

Requesting-machine category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:1.0:subject-category:requesting-

machine

- 66 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Value XACML attribute identifier XACML data type

HTTP server host name http://viewds.com/http/subject/hostname string

HTTP server IP address http://viewds.com/http/subject/address string

XACML attributes provided by the ViewDS

PEP
This topic describes the XACML attributes that the ViewDS Policy Enforcement Point
(PEP) includes in an authorization decision request.

These attributes can be declared in an XACMLAccessControl Domain and then used
within a policy to identify the subject, resource and action, for example.

The ViewDS PEP generates authorization decision requests that include the following
XACML attribute categories:

l Action category

l Access-subject category

l Resource category

Action category
The attribute is in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:action

The attribute identifies the action being attempted by a subject (directory user) on a
resource. A resource can be one of the following:

l directory entry

l attribute type

l attribute value

Directory entry

Possible values XACML attribute identifier XACML data type

ReadEntry
BrowseEntry
AddEntry
RemoveEntry
ModifyEntry
RenameEntry
ExportEntry
ImportEntry
ReturnDN
DiscloseEntryOnError
AssertTrust

urn:oasis:names:tc: xacml:1.0: action:action-id string

- 67 -



XACML attributes provided by a PEP

Attribute type

Possible values XACML attribute identifier XACML data type

ReadEntry
CompareType
AddType
RemoveType
FilterMatchType
DiscloseTypeOnError

urn:oasis:names:tc: xacml:1.0: action:action-id string

Attribute value

Possible values XACML attribute identifier XACML data type

ReadValue
CompareValue
AddValue
RemoveValue
FilterMatchValue
DiscloseTypeOnError

urn:oasis:names:tc: xacml:1.0: action:action-id string

Access-subject category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

The PEP includes the following values in an authorization decision request.

Value XACML attribute
identifier

XACML
data type

The authenticated user’s Directory Name (DN), which the PEP
obtains from the user’s authentication information.

urn:oasis:names:tc:xacml:
1.0:subject:subject-id

X500Name

The viewDSUserName attribute in the subject’s directory entry. string

The attribute identified by the RFC822 Name Attribute (see
the XACML Config tab in the ViewDS Management Agent).

rfc822Name

Resource category
These attributes are in the XACML category:

urn:oasis:names:tc:xacml:3.0:attribute-category:resource

The PEP includes the following value in an authorization decision request.

Value XACML attribute identifier XACMLdata
type

The Directory Name (DN) of the
resource.

urn:oasis:names:tc:xacml:
1.0:resource:resource-id

X500Name

- 68 -



ViewDS Access Sentinel: Installation & ReferenceGuide

Operational attributes

This appendix describes the following operational attributes associated with Access
Sentinel:

l viewDSXACMLSubtreePolicy

l viewDSXACMLEntryPolicy

l viewDSXACMLAttributePresentation

l viewDSXACMLPolicyVersion

l viewDSXACMLNamedExpression

l viewDSXACMLActivePolicy

l viewDSXACMLConfiguration

For information about manipulating operational attributes using the ViewDS StreamDUA
tool, see theViewDS Technical ReferenceGuide: Directory SystemAgent.

viewDSXACMLSubtreePolicy
This operational attribute stores an XACML policy that applies to an AccessControl Domain
whose administrative point is at the top of a subtree. The policy applies to the entire subtree.

viewDSXACMLSubtreePolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicy

EQUALITY MATCHING RULE viewDSXACMLPolicyMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-viewds-aca-XACMLSubtreePolicy }

The attribute is stored in an object class, which is a sub-entry located below the
administrative point.

viewDSXACMLSubtreePolicySubentry OBJECT-CLASS ::= {

KIND auxiliary

MUST CONTAIN { viewDSXACMLSubtreePolicy }

ID id-viewds-sc-XACMLSubtreePolicySubentry }

The viewDSXACMLSubtreePolicy attribute is automatically indexed for the
viewDSXACMLPolicyMatchmatching rule.

- 69 -



Operational attributes

viewDSXACMLEntryPolicy
This operational attribute stores an XACML policy that applies to an AccessControl Domain
whose administrative point is a single entry.

viewDSXACMLEntryPolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicy

EQUALITY MATCHING RULE viewDSXACMLPolicyMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-viewds-aca-XACMLSubtreePolicy }

The attribute is stored in an object class, which is a subentry located below the
administrative point.

viewDSXACMLEntryPolicySubentry OBJECT-CLASS ::= {

KIND auxiliary

MUST CONTAIN { viewDSXACMLEntryPolicy }

ID id-viewds-sc-XACMLEntryPolicySubentry }

The viewDSXACMLEntryPolicy attribute is automatically indexed for the
viewDSXACMLPolicyMatchmatching rule.

viewDSXACMLAttributePresentation
This operational attribute describes amapping between a display name in the PAP
interface and an XACML triplet. The XACML triplet comprises a category identifier, an
attribute identifier and a data-type identifier. (A directory attribute type can also be
associated with the triplet.)

viewDSXACMLAttributePresentation ATTRIBUTE ::= {

WITH SYNTAX  XACMLAttributePresentation

EQUALITY MATCHING RULE  viewDSXACMLAttributePresentationMatch

USAGE  directoryOperation

ID  id-viewds-aca-XACMLAttributePresentation

}

XACMLAttributePresentation ::= SEQUENCE {

displayName  [0] UnboundedDirectoryString,

category  [1] AnyURI,

attribute  [2] XACMLAttributeIdentifier,

dataType  [3] AnyURI,

type  [4] AttributeType OPTIONAL,

normalized  [5] BOOLEAN DEFAULT TRUE

mustBePresent  [6] BOOLEAN DEFAULT FALSE,

- 70 -



ViewDS Access Sentinel: Installation & ReferenceGuide

issuerAttribute  [7] BOOLEAN DEFAULT FALSE

obsolete  [8] BOOLEAN DEFAULT FALSE

permittedValues  [9] SEQUENCE OF UnboundedDirectoryString

OPTIONAL

}

XACMLAttributeIdentifier ::= CHOICE {

identifier  [0] AnyURI

-- or an XPath expression in future

}

viewDSXACMLAttributePresentationMatch MATCHING-RULE ::= {

SYNTAX  XACMLAttributeAssertion

ID  id-viewds-mr-XACMLAttributePresentationMatch

}

XACMLAttributeAssertion ::= SEQUENCE {

category  [0] AnyURI,

attribute  [1] XACMLAttributeIdentifier,

dataType  [2] AnyURI

}

The normalized field specifies whether the PAP interface should apply stringprep
normalization to the values of this attribute appearing in the conditions of rules. The
issuerAttribute field indicateswhether values of an attribute can be used to identify a policy’s
issuer. The permittedValues field contains a list of permitted values for an XACML attribute.

viewDSXACMLPolicyVersion
This operational attribute identifies the version and current state of an XACML policy. When
a PAP user creates a new version of a policy, viewDSXACMLPolicyVersion is added to the
access control administrative point.

viewDSXACMLPolicyVersion ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicyVersion

EQUALITY MATCHING RULE viewDSXACMLPolicyVersionMatch

USAGE directoryOperation

ID id-viewds-aca-XACMLPolicyVersion

}

XACMLPolicyVersion ::= SEQUENCE {

Identifier [0] XACMLVersion,

issuer [1] XACMLIssuer OPTIONAL,

locked [2] BOOLEAN DEFAULT FALSE,

base [3] XACMLVersion OPTIONAL

}

- 71 -



Operational attributes

viewDSXACMLPolicyVersionMatch MATCHING-RULE ::= {

SYNTAX XACMLPolicyVersionAssertion,

ID id-viewds-mr-XACMLPolicyVersionMatch

}

XACMLPolicyVersionAssertion ::= SEQUENCE {

identifier [0] XACMLVersion,

issuer [1] XACMLIssuer OPTIONAL

}

The version field contains a single value to identify the version number of the policy. Version
numbers starting with zero (0.1, 0.2, etc) are reserved for old policies that need to be
archived andmanaged outside the PAP interface. The viewDSXACMLPolicy Version
Matchmatching rule uses an integer match on the version field, and requires it to
correspond to the assertion value exactly.

The base field identifies the version fromwhich the current policy was created. If the field is
undeclared, this indicates that the current policy is not based on an existing version.

The locked field indicateswhether the version of policy should bemade available for editing
by the PAP user. The values of the viewDSXACMLPolicyVersion attribute are never
modified or deleted when the locked field is true.

The viewDSXACMLPolicyVersionMatch will match if the issuer is not present in either value
or is present in both.

viewDSXACMLNamedExpression
This operational attribute holds one or more named expressions that can be used by the
PAP user when constructing conditions in an XACML rule.

viewDSXACMLNamedExpression ATTRIBUTE ::= {

WITH SYNTAX  XACMLNamedExpression

EQUALITY MATCHING RULE  viewDSXACMLNamedExpressionMatch

SINGLE VALUE  TRUE

USAGE  directoryOperation

ID  id-viewds-aca-XACMLNamedExpression

}

XACMLNamedExpression ::= SEQUENCE {

identifier  [0] UTF8String,

version  [1] XACMLVersion,

issuer  [1] XACMLIssuer OPTIONAL,

descriptiveName  [2] UTF8String,

description  [3] UTF8String OPTIONAL,

definition  [4] [RXER:TYPE-REF {

namespace-name"http://viewds.com/SchemaGlue",

- 72 -

http://viewds.com/SchemaGlue


ViewDS Access Sentinel: Installation & ReferenceGuide

local-name"XACMLExpressionContainer" }] Markup

}

XACMLIssuer ::= [RXER:TYPE-REF {

namespace-name  “http://viewds.com/SchemaGlue”,

local-name  “XACMLPolicyIssuerContainer” }] Markup

}

viewDSXACMLNamedExpressionMatch MATCHING-RULE ::= {

SYNTAX  UTF8String

ID  id-viewds-mr-XACMLNamedExpressionMatch

}

viewDSXACMLEmbeddedExpressionMatch MATCHING-RULE ::= {

SYNTAX  UTF8String

ID  id-viewds-mr-XACMLEmbeddedExpressionMatch

}

viewDSXACMLActivePolicy
This operational attribute identifies the active version of a specific policy created by a
specific issuer. (The combination of version number and issuer uniquely identifies each
policy.) If the issuer is unspecified then the attribute identifies the active version of the
trusted policy.

viewDSXACMLActivePolicy ATTRIBUTE ::= {

WITH SYNTAX  XACMLActivePolicy

EQUALITY MATCHING RULE  viewDSXACMLActivePolicyMatch

USAGE  directoryOperation

ID  id-viewds-aca-XACMLActivePolicy

}

XACMLActivePolicy ::= SEQUENCE {

version  [0] XACMLVersion,

issuer  [1] XACMLIssuer OPTIONAL

}

viewDSXACMLActivePolicyMatch MATCHING-RULE ::= {

SYNTAX  XACMLActivePolicyAssertion

ID  id-viewds-mr-XACMLActivePolicyMatch

}

XACMLActivePolicyAssertion ::= SEQUENCE {

issuer  [0] XACMLIssuer OPTIONAL

}

- 73 -

http://viewds.com/SchemaGlue


Operational attributes

viewDSXACMLConfiguration
This operational attribute configures various aspects of the Policy Decision Point (PDP) and
is stored in the directory’s root entry. The attribute takes a single value with the syntax
described by this ASN.1 type definition:

XACMLConfiguration ::= SEQUENCE {

combining-algorithm [0] AnyURI DEFAULT

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-

overrides",

default-version [1] UTF8String (PATTERN "(\d+\.)*\d+") OPTIONAL,

rfc822Name-attribute [2] AttributeType OPTIONAL,

user-base-object [3] DistinguishedName OPTIONAL,

user-attributes [4] SET OF AttributeType OPTIONAL,

policy-base-object [5] DistinguishedName OPTIONAL,

allowed-origins [6] SEQUENCE OF UTF8STRING OPTIONAL

}

viewDSXACMLConfiguration ATTRIBUTE ::= {

WITH SYNTAX  XACMLConfiguration

SINGLE VALUE  TRUE

USAGE  dSAOperation

ID  id-viewds-aca-XACMLConfiguration }

The attribute's fields are described below.

combining-algorithm
When the Policy Decision Point (PDP) evaluates an authorization decision request, it finds
the applicable XACML policy sets and combines them according to the combining
algorithm. This only applies to the policy sets declared in the viewDSXACMLPolicySet
attribute. The values of viewDSXACMLPolicy and viewDSSecondaryXACMLPolicySet are
only included if referenced by a policy defined in viewDSXACMLPolicySet. If the combining-
algorithm field is absent, then the default deny overrides is applied. Plausible values are:

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-

overrides"

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-

overrides"

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-

unless-permit"

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-

unless-deny"

For further information see the XACML 3.0 specification.

- 74 -



ViewDS Access Sentinel: Installation & ReferenceGuide

default-version
XACML policies and policy sets can be versioned. By default, when there aremultiple
policies or policy sets with the same identifier, the Policy Decision Point (PDP) uses the one
with the highest version number. Alternatively, if the default-version field is defined, the
Policy Decision Point (PDP) uses the policy or policy set with the highest version number
that is less than or equal to the field’s value.

rfc822Name-attribute
If subject attributes are not provided in an authorization decision request, the Policy
Decision Point (PDP) will attempt to look them up in the Policy Information Point (the
ViewDS directory). For this to occur the request must include the following XACML
attribute:

urn:oasis:names:tc:xacml:1.0:subject:subject-id

If the data type of the subject-id is a:

l String – the Policy Decision Point looks for a directory entry whose viewDSUserName
attribute equals the string value specified by subject-id.

l x500Name – the Policy Decision Point looks for a directory entry whose LDAP
Distinguished Name equals the specified X500 name specified by subject-id.

l rfc822Name – the Policy Decision Point looks for a directory entry that has a value of the
attribute type identified by the rfc822Name-attribute that is equal to the value specified by
subject-id.

user-base-object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a user entry. (The directory acts as a Policy Information Point by storing
information that can influence in an access decision.)

user-attributes
These are user attributes that the Policy Decision Point (PDP) will need to accesswhen
evaluating authorization requests.

policy-base-object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a policy or policy set.

allowed-origins
Defines a cross-origin resource sharing (CORS) policy that specifies fromwhich origins the
Policy Decision Point (PDP) will accept requests.

- 75 -



Operational attributes

The field is a SEQUENCEOFUTF8String where each string is a regular expression
conforming to XMLSchema (see https://www.w3.org/TR/xmlschema-2/#regexs).

Example
Here is an example of a StreamDUA operation to add a value of the
viewDSXACMLConfiguration attribute:

modify {}

with changes { 

add attribute viewDSXACMLConfiguration

{

combining-algorithm "urn:oasis:names:tc:xacml:3.0:" +

"policy-combining-algorithm:deny-unless-permit",

default-version "3.1",

rfc822Name-attribute { 0 9 2342 19200300 100 1 3 }

}

} ;

- 76 -

https://www.w3.org/TR/xmlschema-2/#regexs

	About this guide
	Who should read this guide
	Related documents
	How this guide is organized

	About ViewDS Access Sentinel
	What is Access Sentinel?
	Why use XACML access controls?
	Brief introduction to XACML
	Access Sentinel architecture

	Installing and configuring
	XACML configuration parameters
	Installing the Authorization Policy Manager
	Configuring the Authorization Policy Manager
	Deploying the IIS PEP
	Deploying the Apache PEP
	Modifying the SOAP address
	Tracing decision making

	About XACML framework and policy
	XACML components
	XACML terms to remember
	Introduction to XACML policy
	Attribute-based versus role-based access control policies
	Obligations and advice
	Delegation

	XACML tutorials
	HTTP PEP tutorial
	ViewDS PEP tutorial

	XACML attributes provided by a PEP
	XACML attributes provided by an HTTP PEP
	XACML attributes provided by the ViewDS PEP

	Operational attributes
	viewDSXACMLSubtreePolicy
	viewDSXACMLEntryPolicy
	viewDSXACMLAttributePresentation
	viewDSXACMLPolicyVersion
	viewDSXACMLNamedExpression
	viewDSXACMLActivePolicy
	viewDSXACMLConfiguration


