viewds

identity solutions

ViewDS Access Sentinel:
Installation and Reference Guide

Published: December 2020
Version: 7.5.1
© ViewDS Identity Solutions

ViewDS Access Sentinel: Installation and Reference Guide
For ViewDS Release 7.5.1

December 2020

Document Lifecycle

ViewDS may occasionally update documentation between software releases. Therefore, please visit www.viewds.com to ensure
you have the PDF with most recent publication date. The site also hosts the most recent version of this document in HTML

format.

This publication is copyright. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act,
no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise) be
reproduced, stored in a retrieval system or transmitted without prior written permission. Inquiries should be addressed to the

publishers.

The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy of this
publication. Notwithstanding, ViewDS Identity Solutions does not assume responsibility for any errors nor for any

consequences arising from any errors in this publication.

The software and/or databases described in this document are furnished under a licence agreement. The software and/or

databases may be used or copied only in accordance with the terms of the agreement.

ViewDS Directory, ViewDS Access Presence and ViewDS Access Sentinel are trademarks of ViewDS Identity Solutions.
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

All other product and company names are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2020 ViewDS Identity Solutions
ABN 19 092 422 47

http://www.viewds.com/

Contents

Contents

About this guide 1
Who should read thisguide 1
Related documents . .. 1
How thisguideisorganized 1

About ViewDS Access Sentinel 3
What is ACCeSS Sentinel? 3
Why use XACML access controls? 3
Brief introduction 1o XACML ... 4
Access Sentinel architecture 7

Installing and configuring 13
XACML configuration parameters 13
Installing the Authorization PolicyManager 17
Configuring the Authorization Policy Manager 17
Deploying the 1S PEP . 19
Deploying the Apache PEP . 22
Modifying the SOAP addressl 24
Tracing decision making 25

About XACML framework and policy 27
XACML COMPONENtS .l 27
XACML terms toremember . 28
Introduction to XACML poliCy ... L. 28
Attribute-based versus role-based access control policies 32
Obligationsand advice 34
Delegation .. 35

XACML tutorials . .. 39
HTTP PEP tutorial .l 39
ViewDS PEP tutoriall 53

XACML attributes provided bya PEP 65
XACML attributes provided byan HTTP PEP 65

Contents

XACML attributes provided by the ViewDS PEP 67
Operational attributes 69
viewDSXACMLSubtreePolicy 69
viewDSXACMLENtryPolicy 70
viewDSXACMLAttributePresentation 70
viewDSXACMLPolicyVersion 71
ViewDSXACMLNamedEXPression 72
VIEWDSXACMLACHVEPOIICYol 73
ViewDSXACMLCoNfiguration 74

ViewDS Access Sentinel: Installation & Reference Guide

About this guide

This guide introduces Access Sentinel and the ViewDS implementation of XACML. It also
includes how to install Access Sentinel, and how to write and manage XACML policy.

This section describes:
« Who should read this guide
« Related documents

« How this guide is organized

Who should read this guide

Read this guide if you need to install Access Sentinel and become familiar with writing and
managing XACML policy for applications. Before using this guide, you should first read the
'System Overview' in the ViewDS Directory: Installation and Operation Guide.

Related documents

Other documents relating to Access Sentinel are:

» ViewDS Directory: Installation and Operation Guide

« ViewDS Access Proxy Installation Guide

« ViewDS Technical Reference Guide: Directory System Agent
« ViewDS Technical Reference Guide: User Interfaces

« ViewDS Management Agent in-application help

« ViewDS Authorization Policy Manager in-application help

« ViewDS Application Integration Kit for Java or .NET

How this guide is organized

This guide contains the following:

About this guide

Provides an overview of this guide.

About ViewDS Access Sentinel

Provides an overview of the ViewDS XACML framework and of Access Sentinel, along with
an introduction to XACML.

Installing and configuring

Provides the instructions to install and configure Access Sentinel.

About this guide

About XACML framework and policy
Provides information about Access Sentinel’'s implementation of XACML.

XACML tutorials

Provides the steps to define and apply an XACML policy to a resource.

XACML attributes provided by a PEP

Provides a technical reference for the XACML attributes provided by each Policy
Enforcement Point (PEP).

Operational attributes

Provides a technical reference for Access Sentinel’s operational attributes.

ViewDS Access Sentinel: Installation & Reference Guide

About ViewDS Access
Sentinel

This chapter introduces the ViewDS XACML framework and Access Sentinel, and provides
a brief overview of XACML (eXtensible Access Control Markup Language).

It describes the following:

o Whatis Access Sentinel?

o Why use XACML access controls?
« Brief introduction to XACML

« Access Sentinel architecture

What is Access Sentinel?

The XACML framework is part of the core ViewDS product. It allows you to apply the
XACML Access Control scheme by defining XACML policy that controls access to a
ViewDS directory.

ViewDS Access Sentinel is an extension of the XACML framework that allows you to
apply XACML policy to applications external to ViewDS. Access Sentinel requires
additional licencing beyond that of the core ViewDS product.

The XACML framework and Access Sentinel conform to the XACML Version 3.0 standard.

Why use XACML access controls?

The ViewDS XACML framework and Access Sentinel allow a fine-grained enterprise-wide
approach to managing access-control policy across all of an organisation’s applications and
data sources.

Fine-grained access-control policy goes beyond previous models of access control. These
policies not only control ‘who can do what with which resources’, but also control the why,
when, where and how of entitlement.

Enterprise-wide access controls allow an organization to define, enforce, and audit their
access-control policies. This is of increasing importance in the face of regulatory pressures
and is discussed in more detail below.

http://www.oasis-open.org/

About ViewDS Access Sentinel

Enterprise-wide access control

Traditionally, each application within an organisation has its own access-control
mechanism. The access controls are therefore duplicated across applications and must be
managed individually. As well as creating administrative inefficiencies, this approach also
complicates the task of imposing enterprise-wide access-control policies.

An alternative is to remove access control from the applications and run it as a discrete
service shared across many disparate applications.

This approach has many benefits:

« Consistent access-control policies can be applied to all applications and data sources
o Support and maintenance is streamlined

« Auditing and compliance are simplified

Additionally, enterprise-wide access control allows security to be managed more efficiently.
The moment a policy is created or updated, it can be applied across all relevant applications.
These applications become less complex and easier to maintain without their entitlement
layer —a change to a security policy requires no modification to the application’s code.

Brief introduction to XACML

XACML Version 3.0 is a standard that provides a framework for fine-grained, enterprise-
wide access control. The standard describes two languages, both written in XML: an
access-control policy language, and an access-control decision language.

The policy language is used to describe access-control requirements by defining policies
that describe, for example, who can access what and when. The decision language is used
to form requests and responses. A request asks whether a given action by a given entity
should be allowed; and a response provides the answer, which is determined according to
an XACML policy.

Simplified XACML implementation

The following illustrates a simplified XACML implementation.

XACML Access KACML
Control Components Paolicy
Altempt to
access
‘ resource Resource ,.f'/
O (directory entry) ™.
User

Employee
directory

ViewDS Access Sentinel: Installation & Reference Guide

In the following illustration, a user attempts to view a document file protected by an XACML
access-control implementation. The implementation determines whether the user should be
permitted or denied access by interrogating the appropriate XACML policy.

The policy might include considerations such as the user’s security level, department, role,
position, location and the time of day. All combine to determine whether the user should be
allowed access to the resource (as shown below).

XACML
Policy

XACML Access
Control Components

Resource
(directory entry)

Access
El permitted
(=

User

Employee

directory

XACML access control components

An implementation of XACML access control has four main logical components, as shown
in the illustration below.

[Policy |
‘: ‘ Administration
= ':] Foint

.l
XACHL ==

Policy Policy

\ J Administrator

Paolicy Palicy
Enforcement Decision
Paint Point

Web Server

-

Attribute
Administrator

User
attributes

The logical components are:

« Policy Enforcement Point (PEP)
Protects a resource from unauthorized actions.

About ViewDS Access Sentinel

« Policy Decision Point (PDP)

Determines whether access should be granted to a protected resource.

« Policy Administration Point (PAP)

Allows policies to be created and stored in a repository.

« Policy Information Point (PIP)

Stores additional information, such as user attributes, that can be used by the PDP to
make access-control decisions.

In the illustrated example the resources protected by a Policy Enforcement Point (PEP) are
the web pages available through a web server.

The steps shown in the illustration are as follows:

1.
2.

A user requests access to a web page.

The web server asks the Policy Enforcement Point (PEP) to send an "authorization
decision request’ to the Policy Decision Point (PDP). The request includes XACML
attributes that identify (among other things) the user, the resource they are attempting
access, the action they are attempting to perform, and the environment (for example,
date and time).

The Policy Decision Point (PDP) determines whether access should be permitted. It
looks at the appropriate XACML policy in the Policy Administration Point (PAP), and the
appropriate user attributes in the Policy Information Point (PIP). The information in the
PIP allows the PDP to identify the user attempting to access the resource.

The PDP returns an 'authorization decision response’ to the Policy Enforcement Point
(PEP), which then acts on the decision to permit or deny access to the user.

XACML terms to remember

There are a couple of important XACML terms to remember:

Target — the set of resources protected by the XACML policy (for example, a directory or
aweb site)

Resource — the specific item (for example, an entry, attribute or value in the directory or
a specific web page) within the target that the subject is attempting to access

Subject — the user attempting to access a resource

Action —the action attempted by the subject (e.g. view or modify an entry or web page)

These terms are illustrated below for XBAC where the target is the ViewDS directory and
the resource is an individual directory entry.

subject larget

Diractory

Resource

Actior
————————— e

View an entry

ViewDS Access Sentinel: Installation & Reference Guide

Controlling access to the PIP and PAP

Many organizations implement an XACML solution with the intention to provide a single
point for policy management and enforcement. However, most XACML solutions fail to
meet this expectation because the PAP and PIP are accessed by users and require their
own separate access controls.

Therefore, many XACML solutions introduce a requirement for three new, separate
access-control systems: one for the PAP, a second for the PIP, and a third for the enterprise
XACML access-control system.

An alternative, however, that avoids the complexity of this recursive hierarchy is to unify the
PDP, PAP and PIP into a single policy server. This is the approach adopted by ViewDS and
is discussed in the next section Access Sentinel architecture.

Repositories for the PIP and PAP

The repository for the Policy Information Point (PIP) is typically an existing LDAP directory
because it usually already contains the organization’s user attributes. However, as most
directories cannot manage XML, the repository for the Policy Administration Point (PAP) is
typically a relational database that supports XML.

An improved approach that makes policy management and implementation more efficient is
to store both PIP and PAP data in a single directory that fully supports XML. This makes the
administrator’s job much easier as they can search on the individual XML components
within policy. Again, this is the approach adopted by ViewDS and is discussed in the next
section Access Sentinel architecture.

Access Sentinel architecture
Access Sentinel extends the XACML framework that is installed as part of the core ViewDS
product’s Directory System Agent (DSA).

The XACML framework comprises a PDP that accepts authorization decision requests
from an internal PEP, which protects the directory from unauthorized access. It also
includes a PIP, a PAP, and a user interface to the PAP, which is integrated into the ViewDS
Management Agent.

Access Sentinel extends the XACML framework as follows:

« Itextends the PDP’s functionality to accept authorization decision requests from an
external PEP.

« ltincludes PEPs to protect applications that are external to ViewDS.

« ltincludes a dedicated PAP application, the Authorization Policy Manager, for
administration of XACML policy.

These features are illustrated below.

About ViewDS Access Sentinel

s
ViewDS Directory
System Agent

=

(DSA)

f Folicy \

Administration
Faint

User

Palicy
Administrator

Policy Policy
Enforcement Decision
Paoint Point
Web Server f Folicy '
Infarmation
Faint
User jl
Attribute

attributes

A S——4

Administrator

. /

The remainder of this section describes some of the key features of the framework and
Access Sentinel.

Unified policy server

An important capability of the ViewDS XACML framework is that it unifies the Policy
Decision Point (PDP), Policy Administration Point (PAP) and Policy Information Point
(PIP). Access to the PAP and PIP is therefore controlled internally, eradicating the
complexities and performance overheads associated with the recursive hierarchy described
previously.

Unified PIP and PAP user interface

The PAP user interface allows XACML policy to be defined and managed. There are two
options for accessing the user interface — the ViewDS Management Agent and the
Authorization Policy Manager.

The ViewDS Management Agent is a windows-based application supplied with ViewDS,
which allows you to manage multiple implementations remotely. It allows you to manage
user attributes stored in the Policy Information Point (PIP), and manage policy in the Policy
Administration Point (PAP). You can therefore manage both the PAP and PIP from the
same application.

ViewDS Access Sentinel: Installation & Reference Guide

ViewDS
Access Sentinel

ViewDS
Management
Agent
(includes PAP
user interface)

ViewDS
Directory System Agent

Directory & Policy

Administrator E

The PAP user interface is also available as a Java-based application, the Authorization
Policy Manager, which provides the same PAP functionality as the ViewDS Management
Agent. It can be distributed to the most appropriate people in an organisation to help ensure
policies are maintained efficiently.

Versioning of access-control policy

Users of either PAP interface can create a new version of a policy and then apply it at their
discretion. Users can define when a new version should be enabled allowing them to phase
in the new version or roll back to a previous one.

Options for integrating external applications
While ViewDS includes an internal PEP to protect the directory from unauthorized actions,
Access Sentinel provides PEP solutions to protect external applications.

The following options are available for integrating external applications with Access
Sentinel:

o PEPs:HTTP PEPs for Apache and IIS

« Application Integration Kits for Java and .NET
« SAML

« REST

o JSON over REST

HTTP PEPs

The HTTP PEPs allow XACML policy to be applied to the Microsoft IS and Apache web
servers. Their main tasks are to:

« allow the web server to ask the PEP to enforce authorization decisions for the HTTP
requests it receives

« send an XACML authorization decision request to the PDP for each HTTP request, and
receive an XACML authorization decision response

« permit or deny access based on the authorization decision

About ViewDS Access Sentinel

These tasks are illustrated below.

Web Server
HTTP raguest PEP
Module
HTTP response \\,.
-

Internet

HACML request XACML response Web
Applications
Services
% & Sites
= PDP

il
Users j

ViewDS

Application Integration Kits for Java and .NET

The Access Sentinel’s Application Integration Kits (AIKs) help streamline development of a
PEP. They are C# .NET and Java class libraries that abstract the communication between
a bespoke PEP and the PDP.

Attempting to communicate with the PDP without the library is complex. There are the
intricacies of building the XACML authorization decision request, wrapping and sending it in
a SOAP envelope, and intercepting the PDP’s response. In contrast, the Application
Integration Kits simply require a PEP to make calls that supply the attributes needed to
make an authorization decision.

The AlKs are included in the Access Sentinel distribution.

SAML

Access Sentinel supports the SAML 2.0 Profile of XACML, Version 2.0 OASIS standard,
allowing any external applications that also support this standard to interact with Access
Sentinel for authorization decisions.

The implementation allows the use of SAML 2.0 to carry XACML authorization decisions,
authorization decision queries, and authorization decision responses. The method uses
HTTP and SOAP as part of the authorization request/response interaction.

REST

Access Sentinel supports the REST Profile of XACML v3.0, Version 1 OASIS standard,
allowing any external applications that also support this standard to interact with Access
Sentinel for authorization decisions.

The implementation allows the use of XACML in a RESTful architecture, enabling
interoperability of RESTful Authorization-as-a-Service (AZaaS) solutions. Unlike the SAML
profile, this method does not require the use of SOAP and allows XML-based authorization
requests and responses to be transported directly over HTTP.

-10-

ViewDS Access Sentinel: Installation & Reference Guide

JSON over REST

Access Sentinel supports the Request / Response Interface based on JSON and HTTP for
XACML 3.0, Version 1.0 (Working Draft 14) OASIS draft standard, allowing any external
applications that also support this draft standard to interact with Access Sentinel for
authorization decisions.

The implementation allows the use of JSON to represent authorization request and
response messages that are sent via REST.

-11-

ViewDS Access Sentinel: Installation & Reference Guide

Installing and

configuring

This section includes the instructions for installing and configuring ViewDS Access Sentinel.

NOTE: The XACML framework, and therefore ViewDS Directory, is a prerequisite
for installing Access Sentinel.

NOTE: An Access Sentinel licence is also required.

To install and configure ViewDS Access Sentinel:

1. If ViewDS Directory is not installed, see the ViewDS Directory: Installation and
Operation Guide.

2. Addthe Access Sentinel licence to the DSA’s configuration — see the ViewDS
Management Agent help topic, Import licence information.

3. Read about the XACML configuration parameters.

4. Modify the XACML configuration parameters as required.

5. Optionally, install and configure the Authorization Policy Manager:

a. Installing the Authorization Policy Manager

b. Configuring the Authorization Policy Manger

6. Perform one of the following tasks:
o Deploying the IIS PEP
« Deploying the Apache PEP

XACML configuration parameters

This subsection describes the XACML configuration parameters that apply to XACML
policy, and includes the steps to modify them through the ViewDS Management Agent.
« Combining algorithm

« Default version

« RFC822 name attribute

-13-

Installing and configuring

« User base object

« User attributes

» Resource attributes
« Policy base object

« Allowed origins

Combining algorithm

ViewDS can evaluate policies from different sources: native ViewDS XACML policy
(defined using the ViewDS Management Agent or the Authorization Policy Manager) and
non-native XACML policy (either declared in the viewDSXACMLPolicySet attribute or
supplied in the request).

When an internal decision request is made only native policies are evaluated. If there is
more than one native policy, the results are combined using a deny override combining
algorithm.

However, when an external decision request is made both native AND non-native policies
are evaluated. If a request instructs Access Sentinel to use only policies supplied within that
request (CombinePolicy=false), then the evaluation of other policies (for example native
policies) will result in a Not Applicable outcome.

If a request instructs Access Sentinel to combine polices supplied within that request and
other policies (CombinePolicy=true) then native polices are evaluated using a deny override
combining algorithm and non-native policies are evaluated using the combining algorithm
specified for that non-native policy set.

The results (native and non-native) are then combined using a Combining Algorithm:

« urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-overrides
Deny overrides: If any nested item (rule, policy or policy set) evaluates to deny, then the
container (policy or policy set) evaluates to deny; otherwise, if any item evaluates to
permit, then the container evaluates to permit; otherwise, the container evaluates to not-
applicable.

« urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-overrides
Permit overrides: If any nested item evaluates to permit, then the container evaluates to
permit; otherwise, if any item evaluates to deny, the container evaluates to deny;
otherwise, the container evaluates to not-applicable.

« urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-permit
Deny unless permit: If any nested item evaluates to permit, then the container evaluates
to permit; otherwise, the container evaluates to deny.

« urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-unless-deny
Permit unless deny: If any nested item evaluates to deny, then the container evaluates to
deny; otherwise, the container evaluates to permit.

For further information see the XACML 3.0 specification.

-14-

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

ViewDS Access Sentinel: Installation & Reference Guide

Default version

Every XACML policy has a version number.

By default, when there are multiple policies or policy sets with the same identifier, the Policy
Decision Point (PDP) uses the one with the highest version number. Alternatively, if a
Default Version is defined, the PDP uses the policy or policy set with the highest version
number less than or equal to this value.

This parameter only applies to XACML policy that was not defined through the ViewDS
Management Agent or the Authorization Policy Manager.

RFC 822 name attribute

This configuration parameter identifies a directory attribute that conforms to RFC 822
format. It allows the Policy Decision Point (PDP) to identify a subject by its email address.
This parameter applies to all XACML policy.

For more information, see Attribute look-up.

User attributes

The directory attributes the Policy Decision Point (PDP) will pre-fetch when it needs to
obtain a directory attribute from a user's entry.

This parameter applies to all XACML policy.

Resource attributes

The directory attributes the Policy Decision Point (PDP) will pre-fetch when it needs to
obtain a directory attribute from a resource entry (see Attribute look-up).

This parameter applies to all XACML policy.

User base object

The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a user entry. (The directory acts as a Policy Information Point by storing
information that can influence an access decision.)

This parameter applies to all XACML policy.

Policy base object

The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a policy or policy set.

This parameter applies to all XACML policy.

-15-

Installing and configuring

Allowed origins

Defines a cross-origin resource sharing (CORS) policy.
A CORS policy specifies the origins in HTTP requests that the Policy Decision Point (PDP)
accepts.

Each item in the list is a regular expression (see https://www.w3.org/TR/xmlschema-
2/#regexs) that is matched against the origin in a request. The origin is accepted if it
matches at least one expression and rejected if it matches none of the expressions.

Consider the following example:
http://.*\.example\.com(:[0-9]+)7?

This regular expression matches origins that specify any port, or no port, in any sub-domain
of example.com.

If no expressions are defined then all origins are rejected.

If an HTTP request does not specify an origin it is always accepted.

Modifying the XACML configuration
To set the XACML configuration parameters through the ViewDS Management Agent:

1. Atthe bottom of the left pane, click Server View.

In the left pane, click the appropriate server.

In the right pane, click the XACML Config tab.

Complete the boxes in the XACML Config tab as required.
At the bottom of the tab, click Set XACML Configuration.

o > 0N

-16-

https://www.w3.org/TR/xmlschema-2/#regexs
https://www.w3.org/TR/xmlschema-2/#regexs

ViewDS Access Sentinel: Installation & Reference Guide

Installing the Authorization Policy Manager

The Authorization Policy Manager is a stand-alone PAP that can be installed on any
platform. It provides the same XACML access control functionality as the ViewDS
Management Agent.

To install the application:
1. Install Java SE Runtime (32-bit).

2. From the Access Sentinel distribution media, unzip the file PAPui.zip

Starting the Authorization Policy Manager
To start the application either:
« Inthe extracted folder, double-click PAPui . jar

o Fromacommand shell, enter PAPui.jar

Trusted mode

When the application is in 'trusted mode', appropriate access is granted to a non-
administrative user who has been delegated administration rights to XACML policy (see
Composition-time delegation).

To start the application in trusted mode, enter either of the following from a command shell:
PAPui.jar --trusted

PAPui.jar -t

Configuring the Authorization Policy Manager

Configuring the application involves the following tasks:
« Installing a user certificate

« Connecting to a ViewDS server

» Getting started

« Setting local file security

Installing a user certificate

A user must be authenticated before they can connect the Authorization Policy Manager to
aViewDS server.

There are two options available:

« Simple authentication —the user enters the username and password assigned to their
entry in the ViewDS directory. With simple authentication, the user has non-administrator
access to XACML policy. However, the user will have administrator access to specific
XACML policy if the application is started in trusted mode and an administrator has
delegated trust to the user through composition-time delegation.

-17 -

Installing and configuring

. Certificate based authentication — a user certificate needs to be installed and
imported into the Authorization Policy Manager. With certificate based authentication, the
user has administrator access to all XACML policy.

Toinstall a user certificate (PKCS #12 file):

1. Add the user certificate to the t rusted subdirectory below the ViewDS install
directory. For example, on a Windows installation:

$VFHOMES%\setup\trusted
Where $VFHOMES is the ViewDS install directory.

For further details, see Installing credentials in the ViewDS Directory: Installation and
Operation Guide.

2. Import the PKI credentials into the Authorization Policy Manager:

a. Fromthe Authorization Policy Manager's menu bar, click Tools followed by
Keystore. A new window is displayed.

b. Clickthe Yes with password button to create a keystore for the application.
c. Enter apassword and click OK. The Key Store window is displayed.

d. Inthe Key Store window, click Import and follow the prompts to import the user
certificate into the keystore.

Connecting to a ViewDS server

To connect the Authorization Policy Manager to a ViewDS server (DSA):
1. Click File followed by New Session. The Session window is displayed.
2. Enter a session Name of your choice to appear in the left pane.

3. Inthe Host box, enter the address of your ViewDS server. For example, if the
Authorization Policy Manager is on the same host as the DSA, enter localhost.

4. Enter the Port number to connect to on the DSA (by default, 3000).

5. For simple authentication, enter your Username and Password in the Simple tab.
Otherwise, for strong authentication, click the Certificate tab and select a Key Alias
and enter your Password.

6. Selectthe Connect immediately check-box.

7. Click Save. The session is displayed in the left pane.

Getting started

This task introduces you to the interface:

1. Inthe left pane, right-click Deltawing and from the drop-down menu click Add XACML
Access Control Domain. Three tabs are displayed in the right pane: Policy Versions,
Attributes, and Roles. The interface is equivalent to the XACML AC tab in the ViewDS
Management Agent. Both allow you to perform exactly the same tasks.

2. Intheright pane, click the New button. The New XACML Policy window is displayed.

-18-

ViewDS Access Sentinel: Installation & Reference Guide

3. Inthe Label box, enter a name, such as 'test'.
4. Click Save to accept the defaults. A new policy is listed in the Policy Versions tab.

5. Toremove the XACML Access Control Domain, right-click the Deltawing entry
followed by Remove XACML Access Control Domain.

Setting local file security

The in-application help is displayed in the user's browser. The browser must allow javascript
to interact with the local file system for hypertext links in the help to work. This may require
additional configuration of the browser.

If the hypertext links in the Authorization Policy Manager help do not work in the Chrome
browser for Windows:

1. Close all instances of Chrome.
2. Enter atthe commandline: chrome.exe --allow-file-access-from-file
For Firefox:

1. Inthe browser's address bar, enter about : config and press Enter. The browser’s
preferences are displayed.

2. Inthe Search box, enterprivacy.file unique origin.

3. SettheValueofprivacy.file unique origin to false.

Deploying the I1IS PEP

The IIS PEP is an IS managed module that allows a Microsoft IIS web server to delegate
authorization of HTTP requests to Access Sentinel. It can be deployed to protect access to
specific sets of pages in a site.

Deploying the IIS PEP module involves:
« Enabling .NET extensibility for [IS

o Addingthe PEP tothe lIS

« Configuring the IIS PEP

« Configuring for anonymous access

« Testing the deployment

Enabling .NET extensibility for IIS
To enable .NET extensibility for IIS on Windows 10:

1. From the Windows Control Panel, select Programs and Features.
2. Click Turn Windows features on or off. The Windows Features window is displayed.

3. Expand Internet Information Services, then World Wide Web Services, and
Application Development Features.

4. Selectthe .NET Extensibility 3.5 checkbox.

-19-

Installing and configuring

To enable .NET extensibility for IIS on Windows Server 2019:
1. Open Server Manager.

2. Fromthe Dashboard, click Add roles and features. The Add Roles and Features
Wizard opens.

3. Click Next until the Features list is displayed.

4. Select .NET Framework 3.5 Features then click Next followed by Install.

Adding the PEP to IIS

To add the PEP module to a website:

1. From the Access Sentinel distribution media, copy I ISpepModule.dll and
pdpLiaison.dll tothe site's bin folder (create a bin folder if one does not exist).

2. Add I11SpepModule.dll tothe required website as a managed module. For
example, to add the PEP as a managed module through IS Manager:

a. From Internet Information Services (1IS) Manager, click the required website in the
Connections pane.

b. Inthe central pane, double-click Modules. The modules are listed.

c. Inthe Actions pane on the right, click Add Managed Module. The Add Managed
Module window is displayed.

d. Inthe Name box, enter Access Sentinel PEP.

e. Inthe Type box, enter ITSpepModule. PEP, then click OK.

Configuring the IIS PEP

To configure the IS PEP:
1. Create afolder for the PEP’s log file (for example, c:\peplog).
2. Grantfull access to the PEP’s log file:

a. From Windows Explorer, right-click the log-file folder (for example, c: \peplog)
and click Properties. A Properties window is displayed.

Click the Security tab.
Click the Edit button. The Permissions window is displayed.
Click the Add button. The Select Users or Groups window is displayed.

¢ 2 o T

In the text box, enter Network Service and then click OK. The window closes and
NETWORK SERVICE is added to the Security tab.

f. Click NETWORK SERVICE followed by the Allow checkbox for Full control.
g. Click Apply and then OK.

3. From the Access Sentinel distribution media, copy pepConfig. txt tothe lIS folder
(forexample, c: \Windows\System32\inetsrv\).

4. Setthe IIS PEP configuration-file parameters (see below) inthe pepConfig. txt file
as required.

-20-

ViewDS Access Sentinel: Installation & Reference Guide

IIS PEP configuration-file parameters

The 1IS PEP has a configuration file with the following parameters:

XACMLHost

XACMLPort

XACMLTrace

LogSwitch

LogPath

The host name or IP address of the host on which the ViewDS DSA is
running. For example: 1localhost

The soapAddress on the ViewDS DSA where the PDP listens for
authorization decision requests (see Modifying the SOAP address).
Default: 3009

This parameter is required to be on as part of enabling tracing (see
Tracing decision making).

With tracing enabled, the PEP sends authorization decision requests
that enable tracing of the policies evaluated by the PDP in order to
generate an authorization decision response.

The PDP writes tracing information to its query log; and the PEP writes
tracing information in the authorization decision response to its log
folder (identified by the LogPath parameter). Default: of £

When this parameter is on, the PEP logs all authorization decision
requests and responses exchanged with the PDP to the log folder
(identified by the LogPath parameter).

The location of the PEP’s log files. For example: c:\peplog

NotApplicable The PEP’s action if it receives ‘not applicable’ in an authorization

decision response from the PDP. If the parameter is set to allow, the
user will be granted access to the resources they are attempting to
access; if it is set to intercept, they will be denied access.

Advised: intercept

Indeterminate The PEP’s action if it receives ‘indeterminate’ in an authorization

NoResponse

decision response from the PDP. If the parameter is set to allow, the
user will be granted access to the resources they are attempting to
access; if it is set to intercept, they will be denied access.

Advised: intercept

The PEP’s action if receives no response to an authorization decision
request. If the parameter is set to allow, the user will be granted access
to the resources they are attempting to access; if it is set to intercept,
they will be denied access.

Advised: intercept

The following is an example configuration file:
XACMLHost localhostXACMLPort 3009XACMLTrace offlLogPath
c:\peplogNotApplicable interceptIndeterminate

interceptNoResponse intercept

-21-

Installing and configuring

Configuring for anonymous access

To configure the ViewDS DSA for access by the PEP as an anonymous user:
Open the ViewDS Management Agent.

At the bottom of the left pane, click Server View.

In the left pane, click the appropriate server.

In the right pane, click the Trust tab.

Within the Trust tab, click the Anonymous Privilege tab.

Select the XACML Protocol checkbox.

In the Access Rights box, click read.

Click Save.

©® N o g bk~ DN =

Test the deployment

To test the deployment:

1. Attemptto access the protected website. You should be denied access, which is the
default behaviour if no XACML policy has been defined.

2. Optionally, if required, perform the task Tracing decision making.
3. Define an XACML policy by following the HTTP PEP tutorial.

Deploying the Apache PEP

The Apache PEP protects web pages hosted by an Apache web server, which implement
HTTP authentication. It requires Apache HTTP Server version 2.2.

Deploying the Apache PEP module involves:

« Installing and configuring the Apache PEP

« Configuring for anonymous access

« Testing the deployment

Installing and configuring the Apache PEP

1. Fromthe Access Sentinel distribution media, copy the PEP module mod_authz
xacml . so to the Apache modules directory. For Windows this may be, for example,
\Program Files (x86)\Apache Software
Foundation\Apache?2.2\modules).

2. Inthe Apache configuration file, add a LoadModule directive for the Apache PEP:
modules/mod authz xacml.so

3. Eachdirectory that has HT TP authentication and will be protected by the Apache PEP
requires the following parameters in the Apache configuration file:

¢ XACMLHost "localhost"
e XACMLPort 3009

-22.

ViewDS Access Sentinel: Installation & Reference Guide

e XACMLTrace on

e Require permit
The parameters are described in the next subsection below.
Apache PEP configuration parameters

The following Apache PEP configuration parameters can appear in the Apache
configuration file:

XACMLHost The host name of the ViewDS server (includes the PDP).

XACMLPort The soapAddress on the ViewDS server (by default, 3009) where the
PDP listens for authorization decision requests (see Modifying the
SOAP address).

XACMLTrace Optional and determines whether the PEP’s authorization decision
requests will switch on decision tracing in the PDP. (The tracing is
written to the server’s query log.)

Require per- Isrequiredtoinvoke PEP. Itis a standard Apache directive, but the
mit value permit is specific to Access Sentinel.

XACML Author- Optional and determines whether this module is the authoritative
itative authorisation module. When absent, the default is on (the
recommended setting).

Example configuration

This example configuration applies the Apache PEP to a directory that has basic
authentication in a Windows environment:

LoadModule authz xacml module “modules/mod authz xacml.so”
<IfModule authz xacml module>

<Directory "<path to directory with basic HTTP authentication>">
AuthType Basic
AuthName "Basic"
AuthUserFile "<path to directory with basic HTTP auth>/users"
XACMLHost "localhost"
XACMLPort 3009
XACMLTrace on
Require permit
AllowOverride None
Options FollowSymLinks

</Directory>

</IfModule>

-23-

Installing and configuring

This example references a users file, which is described in Apache’s documentation for
HTTP basic authentication (see http://httpd.apache.org/docs/2.2/mod/ mod _authn_file.html
and http://httpd.apache.org/docs/2.2/mod/ mod authz groupfile.html).

Configuring for anonymous access

To configure the ViewDS DSA for access by the PEP as an anonymous user:
Open the ViewDS Management Agent.

At the bottom of the left pane, click Server View.

In the left pane, click the appropriate server.

In the right pane, click the Trust tab.

Within the Trust tab, click the Anonymous Privilege tab.

Select the XACML Protocol checkbox.

In the Access Rights box, click read.

Click Save.

© N o o bk~ 0w N =

Test the deployment
To test the deployment:

1. Attempt to access the protected website. You should be denied access, which is the
default behaviour if no XACML policy has been defined.

2. Optionally, if required, perform the task Tracing decision making.
3. Define an XACML policy by following the HTTP PEP tutorial.

Modifying the SOAP address

The 1S and Apache PEPs exchange authorization decision requests and responses with
the PDP. Eachis wrapped in a SAML assertion, inserted into a SOAP envelope, and then
added to the payload of an HTTP request or response.

The PDP listens for authorization decision requests on the SOAP address declared in the
ViewDS server’s configuration. By default, the SOAP address is 3009 (the server’s
baseport address, 3000, plus 9).

To modify the SOAP address:

Start the ViewDS Management Agent.

At the bottom of the left pane, click Server View.
In the left pane, click the appropriate server.

In the right pane, click the Configuration tab.
Within the Configuration tab, click Addresses.

Double-click in the Value column nextto SOAP Address.

N o g k0D~

Enter the appropriate address and then click Set.

-24 -

http://httpd.apache.org/docs/2.2/mod/mod_authn_file.html
http://httpd.apache.org/docs/2.2/mod/mod_authz_groupfile.html

ViewDS Access Sentinel: Installation & Reference Guide

Tracing decision making

When the PEP sends an authorization decision request and tracing is enabled:

The PDP generates a trace of the policies evaluated and the result of each. It logs the
trace in its query log (see the ViewDS Management Agent help topic, Working with the
query log).

The PDP also returns the trace in its authorization decision response. The PEP then logs
the trace in the directory identified by the PEP’s configuration-file parameter LogPath
This functionality is currently only available for the 1IS PEP.

To enable tracing:

1.

Set the PEP’s configuration-file parameter XACMLTrace to on (see the |IS PEP
configuration parameters or Apache PEP configuration parameters).

. Enable the DSA’s query log:

From the ViewDS Management Agent, click the Server View button.

In the left pane, click your DSA.

In the right pane, click the Configuration tab followed by Runtime Settings.

For the 'Query logging’ setting, select on in the Current and On Start Up columns.
Click Set.

Define an XACML attribute with the following settings:

©c 2 o T 9

« Labelequals tracing (for example)

o Categoryequalsurn:ocasis:names:tc:xacml:3.0: attribute-
category:action

« ldentifierequalsurn:oasis:names:tc:xacml:1.0: action:action-id
« Data Type equals anyURT

Create a new rule within the policy. The rule's condition should be that the above
XACML attribute isequaltohttp://viewDS.com/xacml/environment/trace
-= equal

dh trace

i @ "http://viewD5.com/xacml/environment,/trace”

-25-

ViewDS Access Sentinel: Installation & Reference Guide

About XACML

framework and policy

This section provides the background information you will need to write XACML policy.
It describes the following:
o« XACML components

« XACML terms to remember
« Introduction to XACML policy

« Attribute-based versus role-based access control policies

« Obligations and advice

» Delegation

XACML components

We'll start by looking at how Access Sentinel's implementation of XACML can be used to
protect web pages.

Consider the following illustration.

User g ™~
El (Subject) 7 Policy \ [Policy

Administration Information

= Paint Point
View Page
(Action)

User

Web Server AttriiSe

Folicy
Decision
Paint

ViewDS Directory
System Agent
(DSA)

Enforcement
Paint

OAN

/

The steps shown in the illustration are described below.

-27 -

About XACML framework and policy

. A user attempts to view a web page hosted by a web server.

. The web server asks the Policy Enforcement Point (PEP) to form an ‘authorization

decision request’.

. The PEP sends the ‘authorization decision request’ to the Policy Decision Point (PDP).

The authorization decision request includes XACML attributes that identify, among
other things, the user and the web page they are attempting to access. (See XACML
attributes provided by a PEP for details.)

The Policy Decision Point (PDP) determines whether access should be permitted. It
does so by accessing the appropriate XACML policy. The policy instructs the PDP to
consider which web page is being accessed and by which user. The user is identified
according to directory attributes in the Policy Information Point (PIP).

5. The PDP returns an ‘authorization decision response’ to the PEP.

6. The web server acts on the decision to permit or deny access to the web page.

XACML terms to remember

There are a couple of important XACML terms to remember:

« Target—the set of resources protected by the policy.

« Resource —the specific item (e.g. web page) within the target that the subject is

attempting to access.

« Subject —the user attempting to access a resource.

« Action —the action attempted by the subject (e.g. view a web page).

These terms are illustrated below:

Subject Target
Directory
Action Resource

Wiew an entry

Introduction to XACML policy

The ViewDS implementation of an XACML policy comprises:
o XACML Access Control Domain

Status and version
XACML attributes
Rules

Precedence

Each is described below.

-28-

ViewDS Access Sentinel: Installation & Reference Guide

XACML Access Control Domain

An XACML Access Control Domain is a specific area of a DIT that contains one or more
XACML policies.

NOTE: In the ViewDS XACML framework, the default behaviour is to deny access to
the entities within an Access Control Domain. (This does not apply to administrative
users of the ViewDS Management Agent, who bypass all access controls.)

For example, when working with the ViewDS directory and the internal PEP, an XACML
Access Control Domain is an area of the directory where the XACML access controls apply.
The entry at the top of the domain is termed the access control administrative point. By
default, ViewDS denies access to all entries within the domain.

Status and version

Every XACML policy has a status and version.

A policy can have multiple versions, each with a unique version number. A version also has
a status that identifies whether it is 'locked' and 'active'.

Only one version of a policy can be 'active’. This is the version that currently applies. You
can therefore test a new version of a policy and then roll-back to a previous version if
necessary.

A'locked' version cannot be modified. However, you can create a new version based on an
existing locked version. This offers a level of version control.

Status: active, locked
Version: 1.1

XACML attributes
XACML is based on the concept of attributes.

The PAP uses XACML attributes to identify the subject, resource, action and environment
information within a rule. The PEP sends requests made up of XACML attributes to the
PDP to convey information about the subject, resource, action and environment. The PDP
then compares these to attribute values in a policy to make access decisions.

The XACML standard defines four categories for attributes:
« Subject — identifies the subject attempting to access a particular resource.
« Resource —identifies the resource the subject is attempting to access.

« Action —identifies the action the subject is attempting to perform on the resource (for
example, read, modify).

« Environment —identifies environmental factors such as day of the week and time of day.

Itis permissible within the XACML standard for any of these four categories to be sub-
divided or for other new attribute categories to be added.

-29-

About XACML framework and policy

For details of the XACML categories and data types of the attributes provided by the PEP,
see XACML attributes provided by a PEP.

For an XACML attribute to be included in policy rules, it must first be declared in the XACML
Access Control Domain. Declaring an XACML attribute involves giving it a ‘user-friendly’
name. This is important because XACML attributes are identified by long URIs or complex
XPath expressions that are unwieldy when creating rules.

You can declare two different types of attributes: attribute designators and selectors.

Attribute Designators

An attribute designator comprises the Category, AttributeId and DataType URIs
of a particular XACML attribute.

For some XACML attributes, the declaration also includes a mapping to a directory attribute
in an entry that uniquely identifies a subject or resource.

Attribute designators allow a policy to specify an attribute value with a given category,
identifier and data type. The PDP will then look for that value in the request, or elsewhere, if
no matching values can be found in the request (see Attribute look-up).

Attribute Selectors

In addition to XACML attributes, XACML requests can contain XML documents for each
category. For example, an XML document might describe the subject or be the actual
resource being accessed.

Attribute selectors allow a policy to look for attribute values in such XML documents using
XPath queries.

XPath is alanguage, based on a tree representation of XML documents, which provides the
ability to navigate around the tree and select nodes using a variety of criteria.

An attribute selector comprises a category, data type and an XPath expression. Together
these are used to resolve a set of attribute values in the request document.

Attribute selectors can be used within XACML policy expressions in the same way as
attribute descriptors. For example, consider an XACML request that contains an XML
document which is the resource a user is attempting to access. An attribute selector can be
configured with an XPath expression to find elements in the document named
PublicationDate. An XACML policy can then include a condition that denies access if the
PublicationDate is more than five years ago.

The following are currently supported:

« the definition of attribute selectors within the Authorization Policy Manager (and the
ViewDS Management Agent)

« the ability to use and evaluate attribute selectors within XACML policies

However, attribute selectors are not applicable to the following as they do not make use of
XML documents within authorization decision requests:

-30-

ViewDS Access Sentinel: Installation & Reference Guide

« the ViewDS XACML framework
« the HTTP PEPS (lIS and Apache)

Rules

Every XACML policy includes a rule.

A rule allows the Policy Decision Point (PDP) to determine whether a subject should be
permitted or denied access to a resource. Each has a target, scope, an effect (permit or
deny access) and a condition.

The target identifies the resources protected by the policy. The scope is used when defining
policy for hierarchical resources, such as directory entries. It determines whether the policy
applies to a single target resource, or to a target resource and all its subordinates.

The condition incorporates XACML attributes which the PDP uses to identify the resource
and subject. It determines whether the rule’s effect should be applied.

A simple example rule is shown below.

Rule

Target: Documents

Scope: subtree

Effect: Permit access (if the following condition is true)
Condition:

resource has attribute webpage ='index.html' AND
subject has attribute role = Board Member AND
action = READ

The condition is true if the subject is a Board Member attempting to view the resource
'index.html’.

Precedence
By default the rule in an XACML policy has a precedence of 0 (zero).

When the Policy Decision Point (PDP) receives an ‘authorization decision request’ it
evaluates the rules with a precedence of 0. This gives a result of either '‘permit’, 'deny’,
'indeterminate’ or 'not applicable'.

When the result is 'not applicable’, the PDP then evaluates rules with a precedence of 1. If
this evaluation returns the same result, the PDP then moves onto rules with a precedence
of 2, and so on. At any stage, if the result is anything but 'not applicable’, the evaluation ends
and PDP returns the result to the Policy Enforcement Point (PEP).

A rule's precedence can be set through either the ViewDS Management Agent or

Authorization Policy Manager. It can be set to zero or any integer value (they do not need to
be sequential) in order to override rules with a higher precedence value.

-31-

About XACML framework and policy

In summary, a rule with a precedence of zero overrides a policy with a precedence of 1, for
example.

Attribute-based versus role-based access

control policies
The viewDS XACML framework supports both attribute-based access control (ABAC) and
role-based access control (RBAC) policies.

In ABAC, attributes associated with the subject, action, resource or environment are used
to construct conditions. These conditions compare attributes to static values or to one
another (relation-based access control) in order to establish if access should be permitted or
denied.

Like ABAC, RBAC uses attributes to construct conditions. However, a separate condition
that identifies a user’s role is also included.

For example, an ABAC policy may look like this:

Permit if the following condition is met:

action = read AND
resource = document-xyz AND
subject’s title = ‘Sales Executive’ AND

subject’s age > 18

An equivalent RBAC policy that separates attribute conditions and role conditions may look
like this:

Permit if the following condition is met:
action = read AND

resource = document-xyz AND

subject’s age > 18

AND the following role condition is met:

subject’s role = Sales Executive

Additionally, RBAC makes use of a role hierarchy for permission inheritance. This means
that access rights for a given user are evaluated based on their allocated role and any
permissions they inherit from subordinate roles within the role hierarchy.

NOTE: Only permit rules are inherited.

For example, consider the situation illustrated below in which the Sales Executive role has a
subordinate role Employee. Using RBAC, a Sales Executive will be evaluated using policies
that apply to their role directly as well as any permit rules for the junior role of Employee.

-32-

ViewDS Access Sentinel: Installation & Reference Guide

| rar: Pali |

Effact: Parmil
Sales Executive Conditiang: Resd docurmanl-oyz if aver 18yra old

Role Conditsan: Sales Exacaitive
Effact; Parmil
Conditans. Randing Sakes Forscmal Repor
Rk Conditsan: Salas Exacabive
Effact: Parmil

Employee Condibons: Accass Leave Fonm Documant
Role Conditan: Emgloyas

Effact: Deny

Conditons: Reading Sales Forecast Report

Role Conditon: Employes
This means that a Sales Executive who is over 18 years old would be able to read
document-xyz, read the Sales Forecast Report and (due to role hierarchy inheritance) have

access to the Leave Form Document.

Attribute look-up

The ViewDS XACML framework is able to look-up subject and resource attributes that are
not provided in an authorization decision request.

Subject attributes

If subject attributes are not provided in an authorization decision request, the Policy
Decision Point (PDP) will attempt to look them up in the Policy Information Point (the
ViewDS directory). For this to occur the request must include the following XACML
attribute:

urn:oasis:names:tc:xacml:1.0:subject:subject-id

The PDP will look up the subject-id XACML attribute definition from within the XACML
Access Control Domain to identify if it has been mapped to a directory attribute. If it has,
then the PDP will used this directory attribute to search ViewDS for the subject. If the
subject-id does not have a directory attribute mapping, it will use the following defaults
based on the subject-id data type (see XACML Configuration Parameters):

« String —the Policy Decision Point looks for a directory entry whose viewDSUserName
attribute equals the string value specified by subject-id.

« x500Name —the Policy Decision Point looks for a directory entry whose LDA
Distinguished Name equals the specified X500 name specified by subject-id.

« rfc822Name — the Policy Decision Point looks for a directory entry that has a value of the
attribute type identified by the rfc822Name-attribute that is configured within the XACML
Configuration setting.

The PDP only expects to find a single subject entry within ViewDS. If multiple entries are

located it will consider the situation to be ambiguous and will not use any of the subject
attributes from within the PIP.

-33-

About XACML framework and policy

Resource attributes

If required resource attributes are not provided in an authorization decision request, the
PDP will attempt to look them up in the PIP (the ViewDS directory). For this to occur the
request must include the following XACML attribute:

urn:oasis:names:tc:xacml:1.0:resource:resource-id

The PDP will look up the resource-id XACML attribute definition from within the XACML
Access Control Domain to identify if it has been mapped to a directory attribute. If it has,
then the PDP will used this directory attribute to search ViewDS for the resource.

The PDP only expects to find a single resource entry within ViewDS. If multiple entries are
located it will consider the situation to be ambiguous and will not use any of the resource
attributes from within the PIP.

Role management

To facilitate RBAC, the ViewDS XACML framework allows you to define and manage
discrete roles and role hierarchies for a given access control domain using the Authorization
Policy Manager (and the ViewDS Management Agent).

Once defined, these roles can be used as static or dynamic role values and included in
XACML access control policies (including ABAC policies).

Static roles are obtained from directory entries or XACML requests. Whereas, dynamic
roles are determined by performing some sort of run-time evaluation.

Role enablement

Role enablement extends the ViewDS XACML framework to support dynamic roles. The
Authorization Policy Manager (and the ViewDS Management Agent) can be used to define
role enablement rules in the form of XACML policies. These rules harness the power of
XACML to determine user roles dynamically. For example:

User role = ‘Acme-Employee’ if email address ends with ‘@acme.com’

User role = ‘Acme-External-Contractor’ if email address ends with @third-
party-contractors.acme.com’

Obligations and advice

Obligations and advice are features of XACML 3.0 that have been implemented in ViewDS
so that it can be used to convey directives to applications that define them within an XACML
response. An obligation is a mandatory directive whereas advice is optional.

Toillustrate, an obligation to add a log entry might be associated with permitting access to a
highly restricted resource. In this case, when the application is told that access is permitted it
is also told that it is obliged to log the access for auditing purposes. If the application cannot
perform the logging operation, it will refuse access to the resource.

Advice is similar to an obligation, except execution of advice by the application is optional.

-34-

ViewDS Access Sentinel: Installation & Reference Guide

For example an XACML response might deny access to a document on the weekend and
come with the advice to show a message to the user that access is only available on week
days.

The specific obligations and advice implemented by a given application are defined by that
application. Access Sentinel merely enables you to associate such obligations and advice
with authorization rules and so use them in access control decisions.

NOTE: Neither ViewDS nor the HTTP PEPs define any obligations or advice for use
in creating access control policy. So, if a policy that grants access contains an
obligation, then ViewDS and the HTTP PEPs will not permit the operation due to
their inability to process the obligation. Both PEPs ignore advice.

Delegation
XACML policy has two broad categories:

« Access policy, which declares rules that determine whether ViewDS grants or denies
access to aresource.

« Administrative policy, which declares rules that authorize access policies.
ViewDS ignores an access policy unless:
« it was written by an administrator; or

« itis authorized by a chain of administrative policies, where the final policy in the chain was
written by an administrator.

The policy is then deemed ‘trusted’.

Only an administrator can manage trusted policies. An administrator is a trusted user of the
Authorization Policy Manager or ViewDS Management Agent.

However, an administrator can delegate authorization to manage trusted policy. The
administration of policies can therefore be decentralised by delegating trust to users of the
Authorization Policy Manager.

The ViewDS XACML framework provides two ways of delegating trust:
« Evaluation-time delegation
» Composition-time delegation

Each is discussed below.

Evaluation-time delegation

An administrative policy can be implemented that delegates trust to a non-administrative
user. The user would be trusted to maintain policies, but within a specified scope and under
specified constraints.

To illustrate, an administrative policy might authorize policies written by a Sales Manager,
provided they apply to the ‘Sales and Marketing’ area of the directory.

-35-

About XACML framework and policy

Later, when the PDP evaluates an authorization request to access a resource, it considers
all relevant policy, including those relating to delegation. Therefore, with the above example,
the PDP would determine whether it should apply the policies written by a Sales Manager. If
the authorization request relates to the ‘Sales and Marketing’ area of the directory, then the
PDP would apply the Sales Manager’s policy. Otherwise, the PDP would simply ignore the
Sales Manager’s policy.

Composition-time delegation

This is another way for an administrator to delegate trust to a non-administrative user.

An administrator can create an access policy that delegates administrator rights within an
XACML Access Control Domain or within an XACML Access Control Subdomain. Each
option is described below.

XACML Access Control Domain

To illustrate composition-time delegation within a domain, consider the following illustration.

[5}--Deltawing XACML Access Control Domain

..... Delta Home Media Ltd. Action = AssertTrust
: User Name = ‘mhunter’

In this example an administrator has created:

o an XACML Access Control Domain at the Deltawing entry

And written an access policy that:

« delegates trust by permitting the action ‘AssertTrust’ by a non-administrative user,
Margaret Hunter

Consequently, after starting the Authorization Policy Manager with the ‘-trusted’ switch,

Margaret Hunter would be considered an administrator for the purpose of managing policy

within the XACML Access Control Domain.

There would, however, be no restrictions on the non-administrative user. Margaret Hunter

would be able to modify every aspect of the access controls in the domain: rules, attributes,

versions, policies, roles, and named expressions.

The only way to impose a restriction is to use precedence. For example, the administrator

could amend the access policy so that the non-administrative user can only manage policy
containing rules with a precedence greater than 1. Therefore, a rule with a precedence of 0

-36-

ViewDS Access Sentinel: Installation & Reference Guide

or 1 could only be modified by an administrator, and would always override those managed
by the non-administrative user.

This restriction would only apply to a policy’s rule as attributes, versions, roles and named
expressions cannot be assigned a precedence.
XACML Access Control Subdomain

To illustrate composition-time delegation within a subdomain, consider the following
illustration.

=] Deltawing XACML Access Control Domain

Action = AssertTrust
User Name = ‘mhunter’

As in the previous example, the administrator has created an XACML Access Control
Domain at the Deltawing entry. However, this time, they have also created:

« an XACML Access Control Subdomain at the Executive entry

The administrator has taken the same access policy shown in the previous example, and
this time applied it to the XACML Access Control Subdomain.

Consequently, after starting the Authorization Policy Manager with the *-trusted’ switch,
Margaret Hunter would be considered an administrator for the purpose of managing policy
within the subdomain.

As well as any restrictions declared by the access policy, there are inherent restrictions
imposed by this type of delegation. The non-administrative user can create versions, policy
and named expressions within the subdomain, but they cannot create attribute and role
definitions. The only attribute and role definitions available to the non-administrative user
are those inherited by the sub-domain.

-37-

ViewDS Access Sentinel: Installation & Reference Guide

XACML tutorials

This chapter takes you through the steps to define and apply XACML policy to a resource. It
includes two tutorials: HTTP PEP tutorial and ViewDS PEP tutorial.

HTTP PEP tutorial

This tutorial takes you through the steps to define and apply an XACML policy to web pages
hosted by either an Apache or IIS web server.

The tutorial includes the following stages:
Requirements

Set the policy base object

Create tutorial files and configure the web server
Declare XACML attributes

Create a policy

Define the first rule

Define the second rule

Define the third rule

Activate the policy

Test the policy

=0 © N o o bk D=

—_—

Lock the policy

Requirements
A policy is required to control user access to a set of web pages with HTTP authentication
and hosted by an Apache or IIS server.
The set of web pages is as follows:
/xacml/index.html
/xacml/restricted/index.html
/xacml/restricted/restricted.html
/xacml/secret/index.html
/xacml/secret/secret.html

HTTP authentication is also required for users with the following usernames: ‘mhunter’,
‘asherma’ and ‘rturnbu’. All should have the same password: ‘testpass’.

-39-

XACML tutorials

The policy will control access as follows:

1. Permit allusers accessto all index . html files

2. Permit only 'mhunter’ and ‘asherma’ accessto restricted.html
3. Permit only 'mhunter’ accessto secret.html

The last requirement is illustrated below.

Subject
larget
Resource
Action Wab
GET Server
Uzer Name = ‘*mhunter’ Eesource Path = .. /xacml/secret/’

When a user (subject) attempts to access a webpage (resource), the Apache Policy
Enforcement Point (PEP) will send an authorization decision request to the Policy Decision
Point (PDP). The request includes values that identify, among other things, the subject, the
resource and the attempted action. These values are held in XACML attributes.

XACML attributes
Before an XACML attribute can be used by the PAP, it must first be declared in the XACML
Access Control Domain.

Each declaration has a ‘Label’ that will appear in a rule’s condition, and a XACML category,
identifier and type. The combination of category, identifier and type dictates the value
returned by the PEP and assigned to the XACML attribute.

The XACML attribute declarations required in this tutorial are as follows.

XACML
Label | XACML attribute category XACML attribute identifier data
type
User [urn:oasis:names:tc:xacml:1.0:subject- [urn:oasis:names:tc:xacml:1.0:subject:subject-|string
Name |category:access-subject id
URL [urn:oasis:names:tc:xacml:3.0:attribute- [http://viewds.com/http/resource/path string

Path |category:resource

NOTE: An XACML attribute's category corresponds to its purpose, as shown in the
previous illustration.

Rules

Each rule has a target, scope, effect and condition. The effect of all three rules in this tutorial
will be to permit access, and their targets will be either paths or webpages. The target and
scope are arbitrary as they only apply to the internal PEP.

The effect (permit) and condition for each rule in this tutorial are shown below.

-40-

ViewDS Access Sentinel: Installation & Reference Guide

Rule 1:
Permit (if the following condition is true)
URL Path contains 'index.html'

Rule 2:

Permit (if the following condition is true)

URL Path contains 'restricted.html' AND

(User Name ='asherma’ OR User Name = 'mhunter')

Rule 3:
Permit (if the following condition is true)
URL Path contains 'secret.html' AND

User Name ='mhunter

Set the policy base object

The policy base object is the root of the directory subtree where the PDP searches for
XACML policy. In this tutorial, the policy base object is the Deltawing entry:

1. Inthe ViewDS Management Agent, click Server View.

2. Inthe left pane, click the appropriate DSA.

3. Intheright pane, click the XACML Config tab.

4. Click the Browse button next to the Policy Base Object box. The DIT Browser is

displayed.
5. Click the Deltawing entry (the first entry below the Root) and then click OK.
6. Atthe bottom of the XACML Config tab, click Set XACML Configuration.

Create tutorial files and configure the web server

Next, copy the files and set up your web server for this tutorial:

1. Create the following directories and files in the appropriate location for your web server
(for example, below the htdocs directory for Apache, or below wwwroot for lIS):
/xacml/index.html
/xacml/restricted/index.html
/xacml/restricted/restricted.html

/xacml/secret/index.html
2. Configure your web server for HTTP authentication on the above files. Apply HTTP
authentication for users with the following usernames: ‘mhunter’, ‘asherma’ and
‘rturnbu’. All should have the same password: ‘testpass’.

For information about configuring a web server for a PEP, see either Deploying the
Apache PEP or Deploying the IIS PEP.

-41 -

XACML tutorials

Create an XACML Access Control Domain

An XACML Access Control Domain is a specific area of a DIT that contains one or more
XACML policies. The entry at the top of the domain is termed the access control
administrative point.

To create an XACML Access Control Domain:

1.
2.

o o kM~ w

At the bottom of the left pane, click Server View.

In the left pane, click your ViewDS server. The Status tab displays the status of your
ViewDS server. The ViewDS server must be running and connected to the VMA.

In the bottom left pane, click Global DIT View.
In the left pane, expand the Deltawing entry.
Right-click the Deltawing entry. A submenu is displayed.

From the submenu, click Add XACML Access Control Domain. The XACML
AC tab is added to the right pane.

Declare XACML attributes
To declare the XACML attributes for the tutorial's policy:

1.

In the right pane, click the XACML AC tab. The tab contains the Policy Versions,
Attributes and Roles sub-tabs.

2. Clickthe Attributes tab.

3. Atthe bottom of the right pane, click the New button. The XACML Attribute window
is displayed.

4. Inthe Label box, enter URL Path. Thisis the name that will appear in the rule.

5. Inthe Category box, click urn:oasis:names:tc:xacml:3.0:attribute-
category:resource. The Identifier box defaults to
urn:oasis:names:tc:xacml:1.0: microprocessor-id, andthe Data
Type defaultsto string.

6. Inthe Identifier box, delete the default value and enter the following:
http://viewds.com/http/resource/path

7. Click Save. The XACML attribute is added to the Attributes tab.

8. Repeat the above steps to declare the following XACML attribute:

Label |Category Identifier Bald

Type
User [urn:oasis:names:tc:xacml:1.0:subject- urn:oasis:names:tc:xacml:1.0:subject:subject-| string
Name |category:access-subject id

-42-

ViewDS Access Sentinel: Installation & Reference Guide

Note that the above information is also in XACML attributes provided by an HTTP PEP.

NOTE: Every attribute in an XACML domain must have a unique combination of
Category, Identifier and Data Type.

Create a policy

To
1.
2.

create the policy:
In the right pane, click the XACML AC tab and then the Policy Versions tab.
In the right pane, click Version Management followed by New Policy Version. The
XACML Policy Version window is displayed.
Accept the default values by clicking Save. A new policy is added to the screen.

NOTE: The policy is marked as open, which indicates that it can be modified. Once a
policy has been locked it cannot be modified. You can, however, create a new policy

based on it.

Define the first rule

To define the first rule:

1.

2,
3,
4.

With '"ABAC Rules' and 'Access' selected in the filter boxes, click the New icon. The
XACML Rule window is displayed. It allows you to define a rule for the current policy.

Inthe Label box, enter Access to index.html.
Optionally, enter a longer Description of the rule.
Click the Edit button. The XACML Expression window is displayed.

XACML Expression window

This window allows you to define a rule's conditions.

-43-

XACML tutorials

Functions Dashboard

B} Kacmil Expeeszion i ¥ H

| Functezns (shboard Bl ! = <3 € > o P __1
Save S
& Exit 2 =St-amt :?-: -
&i . ii T ||
Attribute | - | N
buttons & - 3 | Furctio
© Expression Tree ﬂ
& & -
: i -

Named -

Expression p _

button

Font [4 - e
Setting
button Text pane

Ede Mode

The window has two areas:
o Expression Tree

This is the window’s main work area and allows you to build expressions in a tree format.
o Textpane

This area shows the contents of the Expression Tree in a plain text format.

There are five sets of buttons:

« Functions Dashboard
These buttons allow you to add one of the frequently used functions to the Expression
Tree. The functions are also available through the function buttons.

« Save and Exit button
This button allows you save the Expression Tree and exit the Expression Builder
window.

« Attribute buttons
These buttons allow you to add XACML attributes to the Expression Tree. Only the
XACML attributes declared in the current Access Control Domain are available. There is
a button for each category of XACML attribute: subject, resource, action, environment
and other attributes.

» Font Setting button
This button allows you to change the font for the attributes, values, functions and named
expressions displayed in the text pane.

-44 -

ViewDS Access Sentinel: Installation & Reference Guide

« Named Expression button
This button allows you to add a named expressions to the Expression Tree. Only the
named expressions defined in the current Access Control Domain are available.

« Function buttons
These buttons allow you to add a function to the Expression Tree. There are nine
function categories: Boolean, Relational, XPath, String, Arithmetic, Bag, Set, Date and
Time, and Conversion.

Defining the condition

Each rule has a condition comprising one or more expressions declared in an expression
tree.

The condition for the first rule in this tutorial has the following expression:

URL Path contains ‘index.html’

Every expression has a function and XACML attributes. The function is contains and the
XACML attribute is Resource Path, and is represented in the expression tree as follows:

[F--:#p contains
@ 'index.html’
i.l{y URL Path

To define the first rule's condition:
1. Click the String Functions button. A list of functions is displayed.

equallgnoreCase o
normalizeSpace —
normalizeToLowerCase T
concatenate

fromString ﬁ 5

2. Drag and drop the contains function onto the not-set node in the expression tree. The
contains function is added to the tree with two not-set nodes below it.
o4 contains
idT7) mot-3et
o il not-3et

3. Double-click the first not-set node. The String Editor window is displayed.

4. Inthe Value box, enter index.html and click OK.
- contains
- @ 'index.html"

{.{77) not-set

-45-

XACML tutorials

5. Clickthe Resource Attributes button.
|

i URL Path
2 &

X [Resource Attributes]
T

6. Dragand drop URL Path onto the remaining not-set node.

7. Click Save and Exit. The XACML Expression window closes and the XACML Rule
window is displayed.

l&! Expression Tree
-4y contains

£ 5 3 Ext "index.html"
ave an i S
mEm

8. Click Save. The rule is displayed in the Policy Versions tab.

-46-

ViewDS Access Sentinel: Installation & Reference Guide

Define the second rule

The second rule’s condition is as follows:

URL Path contains 'restricted.html' AND

(User Name ='asherma' OR User Name = 'mhunter’)

The first expression is very similar to the first rule. The second is slightly more complex, and
for the sake of an example you will define it as a named expression.

A named expression is an expression that is saved and can then be reused in different rules.
If you modify a named expression, then the change will affect every rule it appears in.

The first expression and the named expression will be tied together by a Boolean 'and'
function to form the second rule.

- & and

—.& containa

: ----- @ 'restricted.html’
------ (‘}_r; UEL Path

To define the named expression

1. Intheright pane, click the Policy Versions tab.

A

In the first filter box, click Named Expressions. The named expressions are listed in
the summary area of the tab.

Click the New icon. The XACML Named Expression window is displayed.
In the Name box, enter asherma ORmhunter.
Click the Edit button. The XACML Expression window is displayed.

Drag and drop the | function from the Functions Dashboard onto the not-set node at
the top of the Expression Tree. The function is added to the expression tree with two
empty nodes below it.

I

- @ not-set
© not-set

7. Drag and drop the = function from the Functions Dashboard onto the first not-set node.

The function is added to the expression tree with two empty nodes below it.
= ® or

=} W equal
... 0 not-set
“ @ NOt-get

‘. @ not-set

-47 -

XACML tutorials

8. Click the Subject Attributes button, then drag and drop User Name onto the first not-

set node below the = equal function.
- ® or

=] W equal
... o User Name
i @ NOC—-8€C
) not-set

9. Double-click the not-set node below User Name. The String Editor window is
displayed.

10. Inthe Value box, enter asherma and click OK.
_ .. I T

..o User Name
¢ 'asherma'

‘. @ NOT-38C

11. Repeat steps 7 through 10 above so that the Expression Tree is as follows:
=W 0r

User Name

L

'asherma’
= ® equal

-

User Name

.

'mhunter’

12. Click theSave and Exit button.
13. Click Save.

To define the second rule

1. With ABAC Rules and Access selected in the filter boxes, click the New icon. The
XACML Rule window is displayed.

2. Inthe Label box, enter Access to restricted.html.
3. Click the Edit button. The XACML Expression window is displayed.

4. Drag and drop the & function from the Functions Dashboard onto the not-set node at
the top of the Expression Tree. The function is added to the expression tree with two
empty nodes below it.

--- B and
© not-set

© not-set

5. Click the String Functions button. A list of functions is displayed.

-48-

ViewDS Access Sentinel: Installation & Reference Guide

6. Drag and drop the contains function onto the first not-set node in the expression tree.
The function is added to the tree with two not-set nodes below it.
- ® and
© not-sst
. © not-set
i @ noOt-set

7. Double-click the first not-set node. The XACML Value (String) window is displayed.
8. Inthe Value box, enter restricted.html and click OK.
=]~ ®m and
- W contains
' ® 'restricted.html’
i @ not-set
. © not-set

9. Clickthe Resource Attributes button.
|

I URL Path
Bk

x [Resource Attributes }
T

10. Drag anddrop URL Path onto the not-set node below restricted.html.
=~ W and

-}~ ® contains

...® 'restricted.html’
‘.. & URL Path
0 not-sst

11. Clickthe Named Expressions button.

h OF. mhunt [a]w]
dasnerma mnunter | Eﬂh
12. Drag and drop asherma OR mhunter onto the remaining not-set node.
= ® and
= W contains

... ® 'restricted.html’
‘.. & URL Path

2 [asherma OR mhunter]

13. Click the Save and Exit button.
14. Click the Save button.

-49-

XACML tutorials

Define the third rule

The third rule’s condition is as follows:

URL Path contains 'secret.html' AND

User Name ='mhunter'

Itis defined in the expression tree as follows:

.. ® 'secret.html'
. & URL Path

User Name
. ® 'mhunter’

[

To define the rule:

1.

With ABAC Rules and Access selected in the filter boxes, click the Newicon. The
XACML Rule window is displayed.

2. Inthe Label box, enterAccess to secret.html.
3. Click the Edit button. The XACML Expression window is displayed.

4. Drag and drop the & function from the Functions Dashboard onto the not-set node at

the top of the Expression Tree. The function is added to the expression tree with two
empty nodes below it.
-] B and
© not-set
© not-set

5. Click the String Functions button.

6. Drag and drop the contains function onto the first not-set node in the expression tree.

The function is added to the tree with two not-set nodes below it.
= ® and

... © not-set
@ not-zst
© not-set

7. Double-click the first not-set node. The String Editor window is displayed.

8. Inthe Value box, enter secret.html and click OK.

9. Clickthe Resource Attributes button.

-50-

ViewDS Access Sentinel: Installation & Reference Guide

10. Drag and drop URL Path onto the not-set node below secret.html.
- m and
— B contains
| ® ‘'secret.html’
i G- a URL Path
© not-set

11. Drag and drop the = function from the Functions Dashboard onto the remaining not-set
node. The function is added to the expression tree with two empty nodes below it.

- ® "gecret.html’
A URL Path

- @ not-zst

\..0 nNot-set

12. Click the Subject Attributes button, then click and drag User Name onto the first not-
set node below the = equal function.

13. Double-click the not-set node below User Name. The String Editor window is
displayed.
14. Inthe Value box, enter mhunter and click OK.
-~ @ and
® 'secret.html'
- & URL Path

User Name
'mhunter’

e =

15. Click the Save and Exit button.
16. Click Save.

Activate the policy

For a policy to take effect it must be activated. Only one version of a policy can be active at
any time. This ensures that after writing a new version of a policy, you can activate it at an
appropriate time and also have the option to roll back by activating the previous version if
necessary.

To activate the policy:

1. Inthe Policy Versions tab, click Version Management followed by Activate. A
warning is displayed.

2. ClickYes. The policy's Statusisnow Active, Open. This signifies thattheruleisin
use (active) but can still be modified (open).

-51-

XACML tutorials

Test the policy

You can test the policy by attempting to access different pages and logging on as different
users when prompted.

For example, you should be able to access:

e http://server/xacml/index.html
with the user name 'rturnbu’

e http://server/xacml/restricted/restricted.html
with the user name 'asherma’

e http://server/xacml/secret/secret.html
with the user name 'mhunter’

But you should be unable to access:

e http://server/xacml/secret/secret.html
with the user name 'asherma’

e http://server/xacml/secret/secret.html
with the user name 'rturnbu’

e http://server/xacml/restricted/restricted.html
with the user name 'rturnbu’

Lock the policy

Once you lock a policy you cannot delete or modify it. You can, however, create a new policy
based on an existing policy by clicking the New button in the Policy Versions tab.

To lock the policy:

1. Inthe Policy Versions tab, click the Version Management button followed by Lock.
A warning is displayed.

2. Click OK. The policy’s Statusisnow Active, Locked.

-52-

ViewDS Access Sentinel: Installation & Reference Guide

ViewDS PEP tutorial

This tutorial takes you through the steps required to apply an XACML policy to an area of
the demonstration directory provided with ViewDS, Deltawing.

The tutorial includes the following stages:
Requirements

Create an XACML Access Control Domain
Declare XACML attributes

Create a policy

Define the first rule

Define the first rule's condition
Define the second rule

Define the second rule's condition
Activate the policy

Test the policy

=0 © N o o kD=

—_—

Lock the policy

Requirements
This tutorial's requirement is for a policy that gives one user, Andrew Sherman, the
privileges to modify meeting room entries in the Deltawing directory.

Both Andrew Sherman and a meeting room can be identified in the Deltawing directory by
their entries' directory attributes:

» Andrew can be identified by his entry's viewDSUserName attribute which is set to
‘asherma’; and

« ameeting room entry can be identified by its businessCategory attribute which is set
to 'Meeting Room’.

Subject Target
Deltawing
Action Resource
ModifyEntry |:|
vigwbhillzserblame = ‘asherma’ businessCategory = ‘Meeting EKoom”

When a directory user (subject) attempts to modify an entry (resource), the Policy
Enforcement Point (PEP) will send an authorization decision request to the Policy Decision
Point. The request includes the values of directory attributes in the subject and resource
entries, plus a value to identify the attempted action. These values are held in XACML
attributes.

-53-

XACML tutorials

XACML attributes
Before an XACML attribute can be used by the PAP, it must first be declared in the XACML
Access Control Domain.

Each declaration has a 'Label' that will appear in a rule’s condition, an XACML category,
and may also require a mapping to a directory attribute.

In this tutorial, the following declarations are required.

XACML
Label XACML attribute category XACML attribute identifier data

type
User urn:oasis:names:tc:xacml:1.0:subject- | urn:oasis:names:tc:xacml:1.0:subject:subjec |string

Name category:access-subject t-id

Action urn:oasis:names:tc:xacml:3.0:attribut | urn:oasis:names:tc:xacml:1.0:action:action-id | string
e-category:action

Business|urn:oasis:names:tc:xacml:3.0:attribut | businessCategory (urn:0id:2.5.4.15) string
Category|e-category:resource

Note that an XACML attribute’s category corresponds to its purpose, as shown in the
illustration above.

Also note thatBusiness Category is mapped to the directory attribute
businessCategory through its XACML Attribute Identifier. However, User Name does
not need to be mapped to a directory attribute because it is one of three values the PEP
provides to identify the subject (see XACML attributes provided by the ViewDS PEP).

The full declarations for the XACML attributes in this tutorial are as follows.

Rules

Two rules are required. The first will permit Andrew Sherman to modify meeting room
entries in the directory. The second will permit all users to search and view entries in the
directory. This is necessary because the default behaviour is to deny access within an
Access Control Domain, unless explicitly permitted.

Rule 1

The first rule’s target, scope, effect and condition are shown below.

Rule 1:

Target: Deltawing

Scope: subtree

Effect: Permit access (if the condition is true)

Condition:

resource has attribute Business Category ='Meeting Room’ AND
subject has attribute User Name = 'asherma' AND

(Action = 'ModifyEntry’ OR Action = 'AddType' OR

Action ='RemoveType’ OR Action = 'AddValue’ OR Action = 'RemoveValue’)

-54 -

ViewDS Access Sentinel: Installation & Reference Guide

The rule’s target will be the entry at the root of the Deltawing directory; its scope will be the
entire subordinate subtree below the root entry; and its effect will be to permit access if the
condition is true. The condition will be true when the user with the User Name 'asherma’
(subject) attempts one of the actions on a meeting room entry (resource). Note that omitting
the resource clause would make the rule more general so that it applied it to all entries in the
directory.

Rule 2

The second rule’s target, scope, effect and condition are shown below.

Rule 2:

Target: Deltawing

Scope: subtree

Effect: Permit access (if the condition is true)

Condition:

Action = 'ReadEntry’ OR Action = 'BrowseEntry' OR

Action ='ReturnDN' OR Action = 'ReadType' OR

Action = 'FilterMatchType' OR Action = 'ReadValue' OR Action = 'FilterMatchValue

It has the same target and scope as the first rule. It also permits access if the condition is
true. The condition will be true when any user (subject) attempts one of the search or read
actions on any directory entry (resource).

Create an XACML Access Control Domain

An XACML Access Control Domain is a specific area of a DIT that contains one or more
XACML policies. The entry at the top of the domain is termed the access control
administrative point.

To create an XACML Access Control Domain below the Del tawing entryin the
Deltawing directory:

1. Atthe bottom of the left pane, click Server View.

2. Intheleft pane, click your ViewDS server. The Status tab displays the status of your
ViewDS server. Ensure that the ViewDS Management Agent is connected to your
ViewDS server, and that your ViewDS server is running.

In the bottom left pane, click Global DIT View.
In the left pane, expand the Deltawing entry.

Right-click the Deltawing entry. A submenu is displayed.

o o kM

From the submenu, click Add XACML Access Control Domain. The XACML
AC tab is added to the right pane.

-b5.-

XACML tutorials

Declare XACML attributes
To declare the XACML attributes for the tutorial’s policy:

1.

In the right pane, click the XACML AC tab. The tab contains the Policy Versions,

Attributes and Roles sub-tabs.

2. Clickthe Attributes tab.

3. Atthe bottom of the right pane, click New. The XACML Attribute window is
displayed.

4. Inthe Label box, enter 'Action'. Thisis the name that will appear in the rule.

5. Inthe Category box, click urn:oasis:names:tc:xacml:3.0: attribute-
category:action. The content of the Identifier box defaults to
urn:oasis:names:tc:xacml:1.0: action:action-id, andthe Data
Type box defaults to st ring.

6. Inthe Permitted Values area, click the Add button. The XACML Value (String)
window is displayed.

7. Inthetextbox, enter 'ReadEntry' and click OK. The value is added to the
Permitted Values box.

8. Repeat steps 6 and 7 to define the following as permitted values: ModifyEntry,
BrowseEntry, RemoveType, AddType, AddValue, RemoveValue, ReturnDN,
ReadType, FilterMatchType, ReadValue, FilterMatchValue,
DiscloseValueOnError, DiscloseTypeOnError, DiscloseEntryOnError.

9. Click Save. The XACML attribute is added to the Attributes tab.

10 Repeat steps 3 to 5 to declare the XACML attributes in the following table.

Note that the XACML attribute Business Category is mapped to the directory
attribute businessCategory.
ip Data
Label Category Identifier Type
User urn:oasis:names:tc:xacml:1.0:subject- [urn:oasis:names:tc:xacml:1.0:subject:subject-|string
Name category:access-subject id
Business |[urn:oasis:names:tc:xacml:3.0:attribute- [businessCategory(urn:oid:2.5.4.15) string

Category |category:resource

Also see XACML attributes provided by the ViewDS PEP.

NOTE: Every attribute in an XACML domain must have a unique combination of
Category, Identifier and Data Type.

-56 -

ViewDS Access Sentinel: Installation & Reference Guide

Create a policy

To create the policy:

1.
2.

In the right pane, click the Policy Versions tab.

In the right pane, click the Version Management button followed by New Policy
Version. The XACML Policy Version window is displayed.

Accept the default values by clicking Save.

The new policy version number and its status is displayed next to the Version
Management button. Note that the policy is marked as open, which indicates that it can
be modified. Once a policy has been locked it cannot be modified . You can, however,
create a new policy based on it.

Define the first rule

To create the first rule in the policy:

1.

With 'ABAC Rules' and 'Access' selected in the filter boxes, click the New button. The
XACML Rule window is displayed. It allows you to define a rule for the current policy.

2. Inthe Label box, enter Andrew Sherman meeting room access.

3. Enter ashort Description of the rule, suchas Permit Andrew Sherman full

4.

access to meeting room entries.

Note that the Target is set to Deltawing and its Scope is subtree. Hence, the target s all
subtrees and entries subordinate to Deltawing. Also note that the Effect is set to the
default, permit.

Click the Edit button. The XACML Expression window is displayed.

Define the first rule's condition

Each rule has a condition comprising a set of expressions. The condition for the rule in this
tutorial is as follows:

resource has attribute Business Category =’'Meeting Room’ AND

subject has attribute User Name = 'asherma' AND

(Action ='ModifyEntry’ OR Action = 'AddType’ OR

Action ='RemoveType’ OR Action ='AddValue’ OR Action ='RemoveValue’)

Each line in the condition is an expression.

Defining the first expression

To define the first expression in the rule's condition:

1.

The three expressions in the rule's condition are combined by a Boolean 'And' function:
In the XACML Expression window, drag and drop the & from the Functions Dashboard
to the node at the top of the expression tree. The function is displayed in the expression
tree with two empty nodes below it.

-57-

XACML tutorials

--- B and
© not-set
© not-set
Note: To replace a function, drag and drop another function on top of it.

2. You can now start to define the first expression in the condition. Click the Relational
Functions button. A list of functions is displayed.

equal =
lessThan

greaterThan . z

=]

lessThanOrEqual

O] -
greaterThanOrEqual EJ
Match » -

1

3. Drag and drop equal onto the first empty node in the expression tree. The equal
function is added to the tree with two new empty nodes below it.
-8 and
- B equal
' -© not-set
‘. @ not-set
‘. @ not-set

4. On the left of the window, click the Resource Attributes button.

|
D 2 Business Category

—3]

5. Dragand drop Business Category onto the fist not-set node below the equal
function.

-] ® and

= equal

i ; Business Category
_ ...0 not-set

.. @ not-set

6. Double-click the not-set node below Business Category. The XACML Value (String)
window is displayed.

7. Inthe Value box, enter Meeting Room and then click OK. The string is added to the
expression.

—]- B and
— B equal
. . a Business Category
i - » 'Meeting Room'
i @ not-set

Now define the second expression in the condition.

-58 -

ViewDS Access Sentinel: Installation & Reference Guide

Defining the second expression

To define the second expression in the condition:

1.

> W

From the Functions Dashboard, drag and drop the = function onto the remaining not-
set node. The equal function is added to the tree with two new empty nodes below it.

-]-m and
=] ® egual
Business Category

'Meeting Room’'

not-set

oo e »

not-set

Click the Subject Attributes button.

a}' :I Uzer Mame

Drag and drop User Name onto the fist node below the equal function.

. Double-click the not-set node below User Name. The XACML Value (String) window

is displayed.

Enter asherma and then click OK. The string is added to the expression.
- ® and
-] B egual
A Business Category
® 'Meeting Room'
A User Name
® 'asherma'

Now define the remaining expression.

Defining the remaining expression

To define the remaining expressions:

1.

Right-click the and function at the top of the Expression Tree, then click Add New
Argument. A new 'not-set' node is added to the bottom of the Expression Tree.

From the Functions Dashboard, drag and drop the | function onto the new not-set
node. The 'or' function is displayed with two new 'not-set' nodes below it.

In the Expression Tree, right-click the or function, and then click Add New Argument.
A third 'not-set' node is displayed below the 'or' function.

Repeat step 3 until there is a total of five 'not-set' nodes below the or function in the
Expression Tree.

From the Functions Dashboard, drag and drop the = function onto the first not-set node

below the 'or' function. The equal function is added to the tree with two new 'not-set'
nodes below it.

Click the Actions button. The XACML attribute 'Action’ is displayed.

-59.-

XACML tutorials

7. Drag and drop Action onto the fist not-set node below the equal function.
8. Double-click the not-set node below 'Action’. The XACML Value (Enumerated)

window is displayed.

9. Choose ModifyEntry from the dropdown list of values and click OK.

10.

Repeat steps 5 through 9 to add the following actions to the Expression Tree: AddType,
RemoveType, AddValue, RemoveValue.

Working with named expressions

A named expression is an expression that is saved and can then be reused in different rules.
If you modify a named expression, the change will affect every rule it appears in.

These steps are not required to define the first rule, but are included in this tutorial to
familiarize you with named expressions:

1.

AW N

In the Expression Tree, right-click the or function.

. Click Save as a Named Expression. A window is displayed.
. EnterUpdate Actions andthen click OK.

Right-click the or function, then click Delete. The node is deleted from the tree.

Right-click the and function at the top of the Expression Tree, then click Add New
Argument. A new 'not-set' node is added.

Click the Named Expressions button. The named expression 'Update Actions' you
just created is displayed.

Update Actions =
=R

Drag and drop Update Actions onto the not-set node in the Expression Tree.

|

Business Category

'Meeting Room'

User Name

L

® 'asherma'
% [Update Actions]
You can view the text version of the named expression by hovering your mouse over it.

Click the Save and Exit button. The XACML Expression window closes and the
condition is displayed in the Condition box of the XACML Rule window.

9. Click Save. The rule is added to the Rules area of the Policy Versions tab.

To view the named expression:
a. Intheright pane, click the Policy Versions tab.

b. Inthe firstfilter box, click Named Expressions. The named expressions are listed
in the summary area of the tab.

-60 -

ViewDS Access Sentinel: Installation & Reference Guide

c. Click the named expression and then click the Open button. The XACML Named
Expression window is displayed.

d. Click the Edit button. The named expression is displayed in the XACML Expression
window.

Define the second rule

To create the second rule in the policy:

1.

With '"ABAC Rules' and 'Access' selected in the filter boxes, click the New button. The
XACML Rule window is displayed.

2. Inthe Label box, enter Search & Read access control.

3. Enter ashort Description of the rule, suchas Permit all users search and

4.

read access to all entries.

Click the Edit button. The XACML Expression window is displayed.

Define the second rule's condition

The second rule's condition is as follows:

Action ='ReadEntry' OR Action = 'BrowseEntry' OR

Action ='ReturnDN' OR Action ='ReadType' OR

Action ='FilterMatchType' OR Action ='ReadValue' OR

Action = 'FilterMatchValue' OR Action ='DiscloseEntryOnError OR
Action ='DiscloseTypeOnError OR Action = 'DiscloseValueOnError

To define these expressions:

1.

From the Functions Dashboard, drag and drop the | function onto the not-set node at
the top of the Expression Tree. The function is added to the Expression Tree with two
empty nodes below it.

In the Expression Tree, right-click the or function, then click Add New Argument. A
'not-set' node is added to the tree.

3. Repeat the above step until there are ten 'not-set' nodes.

4. From the Functions Dashboard, drag and drop the = function onto the first not-set node

below the or function. The equal function is added to the tree with two new empty nodes
below it.

5. Clickthe Action Attributes button. The XACML attribute Action is displayed.
6. Drag and drop Action onto the fist not-set node below the equal function.
7. Double-click the not-set node below Action. The XACML Value (Enumerated)

window is displayed.
Choose ReadEntry from the dropdown list and click OK.

-61-

XACML tutorials

9. Repeat steps 4 and 8 in order to add the following to the remaining not-set nodes:

« Action = BrowseEntry
o Action=ReturnDN
« Action = ReadType
« Action = ReadValue
« Action = FilterMatchValue
« Action = FilterMatchType
« Action = DiscloseEntryOnError
« Action = DiscloseTypeOnError
« Action = DiscloseValueOnError

10. Click the Save and Exit button, followed by Save.

Activate the policy

For a policy to take effect it must be activated. Only one version of a policy can be active at

any time. This ensures that after writing a new version of a policy, you can activate it at an

appropriate time and also have the option to roll back by activating the previous version if

necessary.

To activate the policy:

1. Inthe Policy Versions tab, click the Version Management button followed by
Activate. A warning is displayed.

2. ClickYes. The policy's Statusisnow Active, Open. This signifies thatthe ruleisin
use (active) but can still be modified (open).

Test the policy

You can test the policy by attempting to modify a meeting room entry through Access

Presence, first as Andrew Sherma and then as another user. (For the instructions to

configure for Access Presence, see Configuring for Access Presence in the ViewDS

Directory: Installation and Operation Guide.)

To test the policy:

1. Openthe URL:
http://host:8090/directoryservices/viewds/webdua.cgi

2. Logon with the user name asherma and password testpass.

3. Inthe drop-down box, click Function Search and then click Access. The Advanced
Search page is displayed.

4. Inthe function box, entermeeting roomand press the return key. A list of meeting
rooms is displayed.

5. Click the third meeting room in the list. The entry for the Sales Meeting Room is
displayed.

-62-

ViewDS Access Sentinel: Installation & Reference Guide

© © N o

Click Modify. The Modify page is displayed.
Modify the contents of the Description box and then click Save.
Log off by closing the browser session.

Repeat this task from step 1, logging on with the user name rturnbu and password
testpass. This user will not be able to modify any entries.

-63-

ViewDS Access Sentinel: Installation & Reference Guide

XACML attributes
provided by a PEP

This appendix describes the attributes provided by each Policy Enforcement Point (PEP):
o« XACML attributes provided byan HTTP PEP
o« XACML attributes provided by the ViewDS PEP

XACML attributes provided by an HTTP PEP

The attributes are included in an authorization decision request if the corresponding
information is available in the HT TP server request context. They can be declared and
included in an XACML policy.

They are in the following XACML attribute categories:
« Access-subject category

« Action category

« Environment category

« Resource category

« Requesting-machine category

Access-subject category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

The PEP includes the following values in an authorization decision request to identify the
subject (the user attempting to access a site, page or application).

Value XACML attribute identifier XACML data
type

HTTP authenticated user urn:oasis:names:tc:xacml: 1.0:subject:subject-id | string

identifier

HTTP authentication mechanism | http://viewds.com/http/subject/auth-type string

HTTP server time (with timezone) | urn:oasis:names:tc:xacml: 1.0:subject:request- dateTime

time
HTTP browser host name http:/iviewds.com/http/resource/hostname string
HTTP browser IP address http:/iviewds.com/http/subject/address string

-65-

XACML attributes provided by a PEP

Action category

This attribute is in the XACML category:

urn:oasis:names:tc:xacml:3.0:attribute-category:action

There is one attribute that identifies the action being attempted by a subject on a resource.

Value XACML attribute identifier XACML data type
HTTP request method urn:oasis:names:tc:xacml:1.0:action: string
action-id
Environment category
These attributes are in the XACML category:
http://viewds.com/http/environment/redirect-uri
Value XACML attribute identifier XACML data type

Redirection page's query string

http://iviewds.com/http/environment/ redirect-query

string

Redirection page's URL

http://viewds.com/http/environment/ redirect-uri

anyURI

Resource category

These attributes are in the XACML category:

urn:oasis:names:tc:xacml:3.0:attribute-category:resource

The PEP includes the following values in an authorization decision request to identify the
resource (the site, page or application that the subject is attempting to access).

Value XACML attribute identifier :;’;EML data
URL hostname http://viewds.com/http/resource/hostname string
URL .lijrn:oasis:names:to:xacml:1 .O:resource: resource- |anyURI
i
File/resource referenced by urn:oasis:names:tc:xacml:1.0:resource: resource- |string
URL id
URL scheme http://viewds.com/http/resource/scheme integer
URL port number http://lviewds.com/http/resource/port string
URL path information http://iviewds.com/http/resource/path string
URL query string http://viewds.com/http/resource/query string
URL fragment http://viewds.com/http/resource/fragment string

Requesting-machine category

These attributes are in the XACML category:

urn:oasis:names:tc:xacml:1.0:subject-category:requesting-

machine

-66 -

ViewDS Access Sentinel: Installation & Reference Guide

Value XACML attribute identifier XACML data type
HTTP server host name http://viewds.com/http/subject/hostname string
HTTP server IP address http://viewds.com/http/subject/address string

XACML attributes provided by the ViewDS

PEP

This topic describes the XACML attributes that the ViewDS Policy Enforcement Point
(PEP) includes in an authorization decision request.

These attributes can be declared in an XACML Access Control Domain and then used
within a policy to identify the subject, resource and action, for example.

The ViewDS PEP generates authorization decision requests that include the following
XACML attribute categories:

« Action category
« Access-subject category

« Resource category

Action category
The attribute is in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:action

The attribute identifies the action being attempted by a subject (directory user) on a
resource. A resource can be one of the following:

« directory entry
« attribute type
« attribute value

Directory entry

Possible values XACML attribute identifier XACML data type

ReadEntry urn:oasis:names:tc: xacml:1.0: action:action-id string
BrowseEntry
AddEntry
RemoveEntry
ModifyEntry
RenameEntry
ExportEntry
ImportEntry
ReturnDN
DiscloseEntryOnError
AssertTrust

-67 -

XACML attributes provided by a PEP

Attribute type

Possible values XACML attribute identifier XACML data type

ReadEntry urn:oasis:names:tc: xacml:1.0: action:action-id string

CompareType
AddType
RemoveType
FilterMatchType
DiscloseTypeOnError

Attribute value

Possible values XACML attribute identifier XACML data type
ReadValue urn:oasis:names:tc: xacml:1.0: action:action-id string
CompareValue

AddValue

RemoveValue
FilterMatchValue
DiscloseTypeOnError

Access-subject category
These attributes are in the XACML category:

urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

The PEP includes the following values in an authorization decision request.

Value XACML attribute XACML
identifier data type

The authenticated user’s Directory Name (DN), which the PEP |urn:oasis:names:tc:xacml:[X500Name

obtains from the user’s authentication information. 1.0:subject:subject-id

The viewDSUserName attribute in the subject’s directory entry. string

The attribute identified by the RFC822 Name Attribute (see rfc822Name

the XACML Config tab in the ViewDS Management Agent).

Resource category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:resource

The PEP includes the following value in an authorization decision request.

Value XACML attribute identifier AL RN
type

The Directory Name (DN) of the urn:oasis:names:tc:xacml: X500Name

resource. 1.0:resource:resource-id

-68 -

ViewDS Access Sentinel: Installation & Reference Guide

Operational attributes

This appendix describes the following operational attributes associated with Access
Sentinel:

« viewDSXACMLSubtreePolicy

o vViewDSXACMLENtryPolicy

o viewDSXACMLAttributePresentation
o vViewDSXACMLPolicyVersion

o viewDSXACMLNamedExpression

o viewDSXACMLActivePolicy

o viewDSXACMLConfiguration

For information about manipulating operational attributes using the ViewDS Stream DUA
tool, see the ViewDS Technical Reference Guide: Directory System Agent.

viewDSXACMLSubtreePolicy

This operational attribute stores an XACML policy that applies to an Access Control Domain
whose administrative point is at the top of a subtree. The policy applies to the entire subtree.

viewDSXACMLSubtreePolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicy

EQUALITY MATCHING RULE viewDSXACMLPolicyMatch
SINGLE VALUE TRUE

USAGE directoryOperation

ID id-viewds-aca-XACMLSubtreePolicy }

The attribute is stored in an object class, which is a sub-entry located below the
administrative point.

viewDSXACMLSubtreePolicySubentry OBJECT-CLASS ::= {
KIND auxiliary

MUST CONTAIN { viewDSXACMLSubtreePolicy }

ID id-viewds-sc-XACMLSubtreePolicySubentry }

The viewDSXACMLSubtreePolicy attribute is automatically indexed for the
viewD SXACMLPolicyMatch matching rule.

-69-

Operational attributes

viewDSXACMLEnNtryPolicy

This operational attribute stores an XACML policy that applies to an Access Control Domain
whose administrative point is a single entry.

viewDSXACMLEntryPolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicy

EQUALITY MATCHING RULE viewDSXACMLPolicyMatch
SINGLE VALUE TRUE

USAGE directoryOperation

ID id-viewds-aca-XACMLSubtreePolicy }

The attribute is stored in an object class, which is a subentry located below the
administrative point.

viewDSXACMLEntryPolicySubentry OBJECT-CLASS ::= ({
KIND auxiliary

MUST CONTAIN { viewDSXACMLEntryPolicy }

ID id-viewds-sc-XACMLEntryPolicySubentry }

The viewDSXACMLENntryPolicy attribute is automatically indexed for the
viewDSXACMLPolicyMatch matching rule.

viewDSXACMLAttributePresentation

This operational attribute describes a mapping between a display name in the PAP
interface and an XACML triplet. The XACML triplet comprises a category identifier, an
attribute identifier and a data-type identifier. (A directory attribute type can also be
associated with the triplet.)

viewDSXACMLAttributePresentation ATTRIBUTE ::= {
WITH SYNTAX XACMLAttributePresentation
EQUALITY MATCHING RULE viewDSXACMLAttributePresentationMatch
USAGE directoryOperation

ID id-viewds—-aca-XACMLAttributePresentation

}

XACMLAttributePresentation ::= SEQUENCE ({
displayName [0] UnboundedDirectoryString,
category [1] AnyURI,

attribute [2] XACMLAttributeIdentifier,
dataType [3] AnyURI,

type [4] AttributeType OPTIONAL,

normalized [5] BOOLEAN DEFAULT TRUE
mustBePresent [6] BOOLEAN DEFAULT FALSE,

-70-

ViewDS Access Sentinel: Installation & Reference Guide

issuerAttribute [7] BOOLEAN DEFAULT FALSE

obsolete [8] BOOLEAN DEFAULT FALSE

permittedValues [9] SEQUENCE OF UnboundedDirectoryString
OPTIONAL

}

XACMLAttributeIdentifier ::= CHOICE {

identifier [0] AnyURI

-— or an XPath expression in future

}

viewDSXACMLAttributePresentationMatch MATCHING-RULE ::= ({
SYNTAX XACMLAttributeAssertion

ID id-viewds-mr-XACMLAttributePresentationMatch

}

XACMLAttributeAssertion ::= SEQUENCE ({

category [0] AnyURI,

attribute [1] XACMLAttributeIdentifier,

dataType [2] AnyURI

}

The normalized field specifies whether the PAP interface should apply stringprep
normalization to the values of this attribute appearing in the conditions of rules. The
issuerAttribute field indicates whether values of an attribute can be used to identify a policy’s
issuer. The permittedValues field contains a list of permitted values for an XACML attribute.

viewDSXACMLPolicyVersion

This operational attribute identifies the version and current state of an XACML policy. When
a PAP user creates a new version of a policy, viewDSXACMLPolicyVersion is added to the
access control administrative point.

viewDSXACMLPolicyVersion ATTRIBUTE ::= {
WITH SYNTAX XACMLPolicyVersion
EQUALITY MATCHING RULE viewDSXACMLPolicyVersionMatch
USAGE directoryOperation
ID id-viewds-aca-XACMLPolicyVersion
}
XACMLPolicyVersion ::= SEQUENCE {
Identifier [0] XACMLVersion,
issuer [1] XACMLIssuer OPTIONAL,
locked [2] BOOLEAN DEFAULT FALSE,
base [3] XACMLVersion OPTIONAL

}

-71 -

Operational attributes

viewDSXACMLPolicyVersionMatch MATCHING-RULE ::= ({
SYNTAX XACMLPolicyVersionAssertion,

ID id-viewds-mr-XACMLPolicyVersionMatch

}

XACMLPolicyVersionAssertion ::= SEQUENCE ({
identifier [0] XACMLVersion,

issuer [1] XACMLIssuer OPTIONAL

}

The version field contains a single value to identify the version number of the policy. Version
numbers starting with zero (0.1, 0.2, etc) are reserved for old policies that need to be
archived and managed outside the PAP interface. The viewDSXACMLPolicy Version
Match matching rule uses an integer match on the version field, and requires it to
correspond to the assertion value exactly.

The base field identifies the version from which the current policy was created. If the field is
undeclared, this indicates that the current policy is not based on an existing version.

The locked field indicates whether the version of policy should be made available for editing
by the PAP user. The values of the viewDSXACMLPolicyVersion attribute are never
modified or deleted when the locked field is true.

The viewDSXACMLPolicyVersionMatch will match if the issuer is not present in either value
oris presentin both.

viewDSXACMLNamedExpression

This operational attribute holds one or more named expressions that can be used by the
PAP user when constructing conditions in an XACML rule.

viewDSXACMLNamedExpression ATTRIBUTE ::= ({
WITH SYNTAX XACMLNamedExpression
EQUALITY MATCHING RULE viewDSXACMLNamedExpressionMatch
SINGLE VALUE TRUE

USAGE directoryOperation

ID id-viewds-aca-XACMLNamedExpression

}

XACMLNamedExpression ::= SEQUENCE ({
identifier [0] UTF8String,

version [1] XACMLVersion,

issuer [1] XACMLIssuer OPTIONAL,
descriptiveName [2] UTF8String,
description [3] UTF8String OPTIONAL,
definition [4] [RXER:TYPE-REF ({

namespace-name"http://viewds.com/SchemaGlue",

-72 -

http://viewds.com/SchemaGlue

ViewDS Access Sentinel: Installation & Reference Guide

local-name"XACMLExpressionContainer" }] Markup

}
XACMLIssuer ::= [RXER:TYPE-REF {

namespace-name “http://viewds.com/SchemaGlue”,

local-name “XACMLPolicyIssuerContainer” }] Markup

}

viewDSXACMLNamedExpressionMatch MATCHING-RULE ::= ({
SYNTAX UTF8String

ID id-viewds-mr-XACMLNamedExpressionMatch

}

viewDSXACMLEmbeddedExpressionMatch MATCHING-RULE ::= ({
SYNTAX UTF8String

ID id-viewds-mr-XACMLEmbeddedExpressionMatch

}

viewDSXACMLActivePolicy

This operational attribute identifies the active version of a specific policy created by a
specific issuer. (The combination of version number and issuer uniquely identifies each
policy.) If the issuer is unspecified then the attribute identifies the active version of the
trusted policy.

viewDSXACMLActivePolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLActivePolicy

EQUALITY MATCHING RULE viewDSXACMLActivePolicyMatch
USAGE directoryOperation

ID id-viewds-aca-XACMLActivePolicy

}

XACMLActivePolicy ::= SEQUENCE ({

version [0] XACMLVersion,

issuer [1] XACMLIssuer OPTIONAL

}

viewDSXACMLActivePolicyMatch MATCHING-RULE ::= {
SYNTAX XACMLActivePolicyAssertion

ID id-viewds-mr-XACMLActivePolicyMatch

}

XACMLActivePolicyAssertion ::= SEQUENCE ({

issuer [0] XACMLIssuer OPTIONAL

}

-73-

http://viewds.com/SchemaGlue

Operational attributes

viewDSXACMLConfiguration

This operational attribute configures various aspects of the Policy Decision Point (PDP) and
is stored in the directory’s root entry. The attribute takes a single value with the syntax
described by this ASN.1 type definition:

XACMLConfiguration ::= SEQUENCE {
combining-algorithm [0] AnyURI DEFAULT
"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-
overrides",
default-version [1] UTF8String (PATTERN " (\d+\.)*\d+") OPTIONAL,
rfc822Name-attribute [2] AttributeType OPTIONAL,
user-base-object [3] DistinguishedName OPTIONAL,
user-attributes [4] SET OF AttributeType OPTIONAL,
policy-base-object [5] DistinguishedName OPTIONAL,
allowed-origins [6] SEQUENCE OF UTF8STRING OPTIONAL
}
viewDSXACMLConfiguration ATTRIBUTE ::= {
WITH SYNTAX XACMLConfiguration
SINGLE VALUE TRUE
USAGE dSAOperation
ID id-viewds-aca-XACMLConfiguration }

The attribute's fields are described below.

combining-algorithm

When the Policy Decision Point (PDP) evaluates an authorization decision request, it finds
the applicable XACML policy sets and combines them according to the combining
algorithm. This only applies to the policy sets declared in the viewDSXACMLPolicySet
attribute. The values of viewDSXACMLPolicy and viewDSSecondaryXACMLPolicySet are
only included if referenced by a policy defined in viewDSXACMLPolicySet. If the combining-
algorithm field is absent, then the default deny overrides is applied. Plausible values are:

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-
overrides"
"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-
overrides"
"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-
unless-permit"
"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-

unless—-deny"

For further information see the XACML 3.0 specification.

-74-

ViewDS Access Sentinel: Installation & Reference Guide

default-version

XACML policies and policy sets can be versioned. By default, when there are multiple
policies or policy sets with the same identifier, the Policy Decision Point (PDP) uses the one
with the highest version number. Alternatively, if the default-version field is defined, the
Policy Decision Point (PDP) uses the policy or policy set with the highest version number
that is less than or equal to the field’s value.

rfc822Name-attribute

If subject attributes are not provided in an authorization decision request, the Policy
Decision Point (PDP) will attempt to look them up in the Policy Information Point (the
ViewDS directory). For this to occur the request must include the following XACML
attribute:

urn:oasis:names:tc:xacml: 1.0:subject:subject-id

If the data type of the subject-id is a:

« String —the Policy Decision Point looks for a directory entry whose viewDSUserName
attribute equals the string value specified by subject-id.

« x500Name —the Policy Decision Point looks for a directory entry whose LDAP
Distinguished Name equals the specified X500 name specified by subject-id.

« rfc822Name — the Policy Decision Point looks for a directory entry that has a value of the
attribute type identified by the rfc822Name-attribute that is equal to the value specified by
subject-id.

user-base-object

The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a user entry. (The directory acts as a Policy Information Point by storing
information that can influence in an access decision.)

user-attributes

These are user attributes that the Policy Decision Point (PDP) will need to access when
evaluating authorization requests.

policy-base-object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in
order to find a policy or policy set.

allowed-origins

Defines a cross-origin resource sharing (CORS) policy that specifies from which origins the
Policy Decision Point (PDP) will accept requests.

-75-

Operational attributes

The field is a SEQUENCE OF UTF8String where each string is a regular expression
conforming to XML Schema (see https://www.w3.org/TR/xmlschema-2/#regexs).

Example

Here is an example of a Stream DUA operation to add a value of the
viewDSXACMLConfiguration attribute:

modify {}
with changes {
add attribute viewDSXACMLConfiguration
{
combining-algorithm "urn:oasis:names:tc:xacml:3.0:" +
"policy-combining-algorithm:deny-unless-permit",
default-version "3.1",
rfc822Name-attribute { 0 9 2342 19200300 100 1 3 }
}
b

-76-

https://www.w3.org/TR/xmlschema-2/#regexs

	About this guide
	Who should read this guide
	Related documents
	How this guide is organized

	About ViewDS Access Sentinel
	What is Access Sentinel?
	Why use XACML access controls?
	Brief introduction to XACML
	Access Sentinel architecture

	Installing and configuring
	XACML configuration parameters
	Installing the Authorization Policy Manager
	Configuring the Authorization Policy Manager
	Deploying the IIS PEP
	Deploying the Apache PEP
	Modifying the SOAP address
	Tracing decision making

	About XACML framework and policy
	XACML components
	XACML terms to remember
	Introduction to XACML policy
	Attribute-based versus role-based access control policies
	Obligations and advice
	Delegation

	XACML tutorials
	HTTP PEP tutorial
	ViewDS PEP tutorial

	XACML attributes provided by a PEP
	XACML attributes provided by an HTTP PEP
	XACML attributes provided by the ViewDS PEP

	Operational attributes
	viewDSXACMLSubtreePolicy
	viewDSXACMLEntryPolicy
	viewDSXACMLAttributePresentation
	viewDSXACMLPolicyVersion
	viewDSXACMLNamedExpression
	viewDSXACMLActivePolicy
	viewDSXACMLConfiguration

