
ViewDS Application Integration Kit

for Java

Published: December 2020
Version: 7.5.1
© ViewDS Identity Solutions



ViewDS Application Integration Kit for Java

December 2020

Document Lifecycle

ViewDS may occasionally update documentation between software releases. Therefore, please visit www.viewds.com to ensure

you have the PDF with most recent publication date. The site also hosts the most recent version of this document in HTML

format.

This publication is copyright. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act,

no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise) be

reproduced, stored in a retrieval system or transmitted without prior written permission. Inquiries should be addressed to the

publishers.

The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy of this

publication. Notwithstanding, ViewDS Identity Solutions does not assume responsibility for any errors nor for any

consequences arising from any errors in this publication.

The software and/or databases described in this document are furnished under a licence agreement. The software and/or

databases may be used or copied only in accordance with the terms of the agreement.

ViewDS Directory, ViewDS Access Presence and ViewDS Access Sentinel are trademarks of ViewDS Identity Solutions.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

All other product and company names are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2020 ViewDS Identity Solutions

ABN 19 092 422 47

http://www.viewds.com/


Contents

Contents
Overview 1
Simple authorization requests 2
Unsigned requests 2

Signed requests 6

Requests over a secure connection 9

Obligations and advice 14
Example code 14

Multiple requests 18
Example code 18

Tracing 20
Example code 20

Appendix A: AIK structure 22
AnonymousConnector 22

XmlSigningConnector 22

ClientSslConnector 22

AuthorizationRequest 23

MultiRequest 23

AuthorizationResponse 23

MultiResponse 24

Obligation 24

Advice 24

AttributeAssignment 25

AttributeCategory 25

SubjectAttributes 25

ResourceAttributes 26

ActionAttributes 26

EnvironmentAttributes 26

DelegationInfoAttributes 26

AttributeDataType 27

Result 27

XacmlStatus 27

AIK ClassDiagram 28

Appendix B: AIK exceptions 30

- i -



Contents

Class: AnonymousConnector 30

Class: XmlSigningConnector 32

Class: ClientSslConnector 32

- ii -



ViewDS Version 7.5.1

Overview
The Application Integration Kits (AIKs) for .NET and Java Version 7.5.1 abstract
communication between a Policy Enforcement Point (PEP) and the Policy Decision Point
(PDP) component of ViewDS Access Sentinel. It therefore helps streamline development
of a PEP.

Attempting to communicate with the PDP without the library is complex. There are the
intricacies of building the XACML authorization decision request, wrapping and sending it in
a SOAP envelope, and intercepting the consequent response from the PDP. In contrast,
the AIK libraries simply require a PEP tomake calls that supply the attributes needed to
make an authorization decision.

The design of the .NET and Java AIKs is aligned with the concept of a deny-biased PEP.
Thismeans that if the decision is permit, then the PEP will permit access. If obligations
accompany the decision, then the PEP will permit access only if it understands and is able to
discharge the associated obligations. All other decisions result in the denial of access.

Note that the AIK is not thread safe. Even though simplemulti-threaded code has been
implemented successfully, the kit does not guard against issues arising frommulti-
threading.

- 1 -



ViewDS Version 7.5.1

Simple authorization requests
The Java AIK class library is distributed in the following file:
l PdpLiaison.jar

After adding the Java AIK to your project library, youmust choose which of the three
connector methodswill be used to send requests to the PDP. This choice is important as it
determines how authentication will occur between the AIK and PDP.

Each connector method is described in the following subsections:

l Unsigned requests

l Signed requests

l Requests over a secure connection

Unsigned requests
Use the AnonymousConnector object to perform simple unsigned authorisation requests
by following these steps:

1. Instantiate an object of the class AnonymousConnector:
AnonymousConnector(URL pdpUrl, CommunicationType ct,

PKIXParameters parameters, boolean verifySignature)

Themethod has four arguments:

l pdpUrl – the SOAP address (including the port number) and protocol used. For
example, new URL(“http://localhost:3009”).

NOTE: A secure SSL connection from the PDP sever can be used by
specifying the HTTPS Address (including the port number) of the ViewDS
server in PdpURL. If you use this approach, then the server certificatemust be
trusted by the client AIK. To verify the server certificate the Java AIK uses the
PKIXParameters as specified below. The HTTPS Address of the ViewDS
server is configured using the ViewDSManagement Agent.

l ct – themethod used to communicate with the PDP. Availablemethods are XML_
SOAP, XML_REST and JSON_REST. The default value is Com-
municationType.XML_SOAP.

NOTE: JSON_REST requires an additional third-party library, JSR353: Java
API for JSON Processing (click here to download). For more information, visit
https://jsonp.java.net/download.html. JSON_REST cannot be used if
verifySignature is set to true.

- 2 -

http://search.maven.org/remotecontent?filepath=org/glassfish/javax.json/1.0.4/javax.json-1.0.4.jar
https://jsonp.java.net/download.html


ViewDS AIK for Java

l parameters – the trust anchor and/or target certificate constraints. The AIK
searches the trust anchor specified to establish an SSL connection to the server
and verify the digital signature in the signed response (if signature verification is
enabled). For example, new PKIXParameters(trustAnchor)

l verifySignature – a flag to indicate if signatures should be verified. The sig-
natures on PDP responseswill be checked if this is set to true. The default value is
false.

2. Using AnonymousConnector, instantiate an object of the class
AuthorizationRequest:
CreateRequest()

3. Add attributes to the request object by calling the addElementmethod:
addElement(java.lang.String category, java.lang.String

attribute, AttributeDataType

attributeDataType,java.lang.String value)

Themethodmust be called for each attribute, and has four arguments:

l category – the XACML attribute category. The list of XACML standard cat-
egories is defined in the static class AttributeCategory.

l attribute – the XACML attribute identifier. The lists of XACML standard attrib-
utes are defined in the static classes SubjectAttributes, ResourceAt-
tributes, ActionAttributes, EnvironmentAttributes.

l attributeDataType – the attribute data type.

NOTE: All attribute data types described in the XACML 3.0 standard are
supported with the exception of XPATH expressions.

l value – the attribute value.

4. Call the evaluatemethod of the AnonymousConnector to evaluate the request.
Themethod takes the request as the argument, and returns an
AuthorizationResponse object:
AuthorizationResponse evaluate(AuthorizationRequest req)

5. Process the response. The field result from the response should be checked to estab-
lish the authorization decision.

Example code
This simple example sends an unsigned XACML authorization decision request with the
following details: a user (the subject  in XACML terminology) with the username smith is
attempting tomodify (the action) a document called reports summary (the resource).
public static void main(String[] args) throws AikConnectionException,

AikSecurityException
{ 

PdpConnector connector;

- 3 -



ViewDS Version 7.5.1

AuthorizationRequest req;
AuthorizationResponse res;
URL pdpUrl;
KeyStore trustAnchor;

// Form the URL of PDP
try {

pdpUrl = new URL("http://localhost:6009");
}
catch (MalformedURLException ex) {

Logger.getLogger(Example1.class.getName()).log(Level.SEVERE, null,
ex);

return;
}

// Retrieve trusted KeyStore from file
// File name: `truststore_test_path'
// KeyStore type: `Java KeyStore'
// KeyStore password: `testpass'
trustAnchor = readKeyStore("truststore_test_path", "JKS", "testpass".

toCharArray());

// Create AnonymousConnector object
try {

connector = new AnonymousConnector(pdpUrl,
CommunicationType.XML_SOAP,
new PKIXParameters(trustAnchor),
true);

}
catch (KeyStoreException | InvalidAlgorithmParameterException ex) {

Logger.getLogger(Example1.class.getName()).log(Level.SEVERE, null,
ex);

return;
}

try {
req = connector.createRequest();

//username: smith
req.addElement(

AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

//resource: reports summary
req.addElement(

AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"reports summary");

//action: modify
req.addElement(

AttributeCategory.action,
ActionAttributes.action_id,
AttributeDataType.anyURI,
"foo:bar:modify");

//current time
req.addElement(

AttributeCategory.environment,
EnvironmentAttributes.current_time,
AttributeDataType.time,

- 4 -



ViewDS AIK for Java

PdpConnector.formatLocalTimeForXml(new Date()));

res = connector.evaluate(req);
}
catch (AikException | SOAPException ex) {

Logger.getLogger(Example1.class.getName()).log(Level.SEVERE, null,
ex);

return;
}

if (res.getResult().equals(Result.permit)) {
System.out.println("Permit");

}
else {

System.out.println("Not permit");
}

}
private static KeyStore readKeyStore(String keyStorePath, String storeType, char[]
storePass)
{

KeyStore local = null;
try {

local = KeyStore.getInstance(storeType);
local.load(new FileInputStream(keyStorePath), storePass);

}
catch (Exception ex) {

Logger.getLogger(Example1.class.getName()).log(Level.SEVERE, null,
ex);

}
return local;

}

NOTE: There is no need to use the static classes: AttributeCategory,
SubjectAttributes, ResourceAttributes, ActionAttributes and EnvironmentAttribute.
You can use your own identifiers instead of the XACML standard identifiers. For
example:

req.addElement(
foo:bar:myCategory,
foo:bar:myAttribute,
AttributeDataType._integer,
“150”);

- 5 -



ViewDS Version 7.5.1

Signed requests
Alternatively, use the XmlSigningConnector object to sign simple authorisation
requests using XML digital signatures before sending them to the server:

1. Instantiate an object of the class XmlSigningConnector:
XmlSigningConnector(URL pdpUrl, CommunicationType ct,

PrivateKeyEntry signingKeyPair, CertificateInclusion

certInclusion, PKIXParameters parameters, boolean

verifySignature)

Themethod has six arguments:

l pdpUrl - the SOAP address (including the port number) and protocol used. For
example, new URL(“http://localhost:3009”).

NOTE: A secure SSL connection from the PDP sever can be used by
specifying the HTTPS Address (including the port number) of the ViewDS
server in PdpURL. If you use this approach, then the server certificatemust be
trusted by the client AIK. To verify the server certificate the Java AIK uses the
PKIXParameters as specified below. The HTTPS Address of the ViewDS
server is configured using the ViewDSManagement Agent.

l ct - themethod used to communicate with the PDP. Availablemethods are XML_
SOAP and XML_REST. The default value is CommunicationType.XML_SOAP.

NOTE: The XmlSigningConnector method does not support the
communication type JSON_REST.

l signingKeyPair – the signing keypair entry which contains a private key and the
corresponding certificate chain, used for signing the requests.

l certInclusion – determineswhether the signing certificate only or all of the cer-
tificates in the certificate chain should be included in the signature. For example,
CertificateInclusion.certificateChain.

l parameters – the trust anchor and/or target certificate constraints. The AIK
searches the trust anchor specified to establish an SSL connection to the server
and verify the digital signature in the signed response (if signature verification is
enabled). For example, new PKIXParameters(trustAnchor).

l verifySignature – a flag to indicate if signatures should be verified. The sig-
natures on PDP responseswill be checked if this is set to true. The default value is
false.

2. Using XmlSigningConnector, instantiate an object of the class
AuthorizationRequest:
CreateRequest()

- 6 -



ViewDS AIK for Java

3. Add attributes to the request object by calling the addElementmethod:
addElement(java.lang.String category, java.lang.String

attribute, AttributeDataType

attributeDataType,java.lang.String value)

Themethodmust be called for each attribute, and has four arguments:

l category – the XACML attribute category. The list of XACML standard cat-
egories is defined in the static class AttributeCategory.

l attribute – the XACML attribute identifier. The lists of XACML standard attrib-
utes are defined in the static classes SubjectAttributes, ResourceAt-
tributes, ActionAttributes, EnvironmentAttributes.

l attributeDataType – the attribute data type.

NOTE: All attribute data types described in the XACML 3.0 standard are
supported with the exception of XPATH expressions.

l value – the attribute value.

4. Call the evaluatemethod of the XmlSigningConnector to evaluate the request.
Themethod takes the request as the argument, and returns an
AuthorizationResponse object:
AuthorizationResponse evaluate(AuthorizationRequestreq)

5. Process the response. The field result from the response should be checked to estab-
lish the authorization decision.

Example code
This example is the same as the one given for unsigned requests but in this case a signed
XACML authorization decision request is sent.
public static void main(String[] args) throws AikConnectionException,

AikSecurityException
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
URL pdpUrl;
KeyStore trustAnchor;
KeyStore keyStore;
PrivateKeyEntry signingKeyPair;
ProtectionParameter password;

// Form the URL of PDP
try {

pdpUrl = new URL("http://localhost:6009");
}
catch (MalformedURLException ex) {

Logger.getLogger(Example2.class.getName()).log(Level.SEVERE, null, ex);
return;

}

// Retrieve trusted KeyStore from file

- 7 -



ViewDS Version 7.5.1

// File name: `truststore_test_path'
// KeyStore type: `Java KeyStore'
// KeyStore password: `testpass'
trustAnchor = readKeyStore("truststore_test_path", "JKS", "testpass".

toCharArray());

// Retrieve KeyStore which contains the signing KeyPair
// File name: `mykeystore.jks'
// KeyStore type: `Java KeyStore'
// KeyStore password: `testpass'
keyStore = readKeyStore("mykeystore.jks", "JKS", "testpass".toCharArray());
try {

// Retrieving KeyPair from keyStore
// Signing key Alias: `mhunter'
// Signing key Alias password: empty
password = new KeyStore.PasswordProtection("".toCharArray());
signingKeyPair = (KeyStore.PrivateKeyEntry)keyStore.getEntry

("mhunter", password);
}
catch (Exception ex) {

Logger.getLogger(Example2.class.getName()).log(Level.SEVERE, null, ex);
return;

}

// Create XmlSigningConnector object
try {

connector = new XmlSigningConnector(pdpUrl,
CommunicationType.XML_SOAP
signingKeyPair,
CertificateInclusion.certificateChain,
new PKIXParameters(trustAnchor),
true);

}
catch (KeyStoreException | InvalidAlgorithmParameterException ex) {

Logger.getLogger(Example2.class.getName()).log(Level.SEVERE, null, ex);
return;

}

try {
req = connector.createRequest();

//username: smith
req.addElement(

AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

//resource: reports summary
req.addElement(

AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"reports summary");

//action: modify
req.addElement(

AttributeCategory.action,
ActionAttributes.action_id,
AttributeDataType.anyURI,
"foo:bar:modify");

//current time

- 8 -



ViewDS AIK for Java

req.addElement(
AttributeCategory.environment,
EnvironmentAttributes.current_time,
AttributeDataType.time,
PdpConnector.formatLocalTimeForXml(new Date()));

res = connector.evaluate(req);
}
catch (AikException | SOAPException ex) {

Logger.getLogger(Example2.class.getName()).log(Level.SEVERE, null, ex);
return;

}

if (res.getResult().equals(Result.permit)) {
System.out.println("Permit");

}
else {

System.out.println("Not permit");
}

}
private static KeyStore readKeyStore(String keyStorePath, String storeType, char[]
storePass)
{

KeyStore local = null;
try {

local = KeyStore.getInstance(storeType);
local.load(new FileInputStream(keyStorePath), storePass);

}
catch (Exception ex) {

Logger.getLogger(Example2.class.getName()).log(Level.SEVERE, null, ex);
}
return local;

}

Requests over a secure connection
Or use the ClientSslConnector object to send requests over a secure HTTPS
connection by following these steps:

NOTE:When ClientSslConnector is used both the AIK client and the PDP
server have to present their certificates to each other for authentication to occur.

1. Instantiate an object of the class ClientSslConnector:
ClientSslConnector(URL pdpUrl, CommunicationType ct,

PrivateKeyEntry clientKeyPair, PKIXParameters parameters,

boolean verifySignature)

Themethod has five arguments:

l pdpUrl - the SOAP address (including the port number) and protocol used. For
example, new URL(“http://localhost:3009”).

l ct - themethod used to communicate with the PDP. Availablemethods are XML_
SOAP, XML_REST and JSON_REST. The default value is Com-
municationType.XML_SOAP.

- 9 -



ViewDS Version 7.5.1

NOTE: To use the communication type JSON_REST an additional third party
library - JSR353: Java API for JSON Processing - is required. You can
download the library here. To find out more about this library visit
https://jsonp.java.net/download.html.

NOTE: The communication type JSON_REST cannot be used if
verifySignature is set to true.

l clientKeyPair – the client keypair entry which contains a private key and the
corresponding certificate chain, used by the client to authenticate itself against the
server.

l parameters – the trust anchor and/or target certificate constraints. The AIK
searches the trust anchor specified to establish an SSL connection to the server
and verify the digital signature in the signed response (if signature verification is
enabled). For example, new PKIXParameters(trustAnchor).

l verifySignature – a flag to indicate if signatures should be verified. The sig-
natures on PDP responseswill be checked if this is set to true. The default value is
false.

2. Using ClientSslConnector, instantiate an object of the class
AuthorizationRequest:
CreateRequest()

3. Add attributes to the request object by calling the addElementmethod:
addElement(java.lang.String category, java.lang.String

attribute, AttributeDataType

attributeDataType,java.lang.String value)

Themethodmust be called for each attribute, and has four arguments:

l category – the XACML attribute category. The list of XACML standard cat-
egories is defined in the static class AttributeCategory.

l attribute – the XACML attribute identifier. The lists of XACML standard attrib-
utes are defined in the static classes SubjectAttributes, ResourceAt-
tributes, ActionAttributes, EnvironmentAttributes.

l attributeDataType – the attribute data type.

NOTE: All attribute data types described in the XACML 3.0 standard are
supported with the exception of XPATH expressions.

l value – the attribute value.

4. Call the evaluatemethod of the ClientSslConnector to evaluate the request.
Themethod takes the request as the argument, and returns an

- 10 -

http://search.maven.org/remotecontent?filepath=org/glassfish/javax.json/1.0.4/javax.json-1.0.4.jar
https://jsonp.java.net/download.html


ViewDS AIK for Java

AuthorizationResponse object:
AuthorizationResponse evaluate(AuthorizationRequest req)

5. Process the response. The field result from the response should be checked to estab-
lish the authorization decision.

Example code
This example is the same as the previous ones but in this case the XACML authorization
decision request is sent over a secure HTTPS connection.
public static void main(String[] args) throws AikSecurityException,

AikConnectionException
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
KeyStore keyStore;
KeyStore trustAnchor;
PrivateKeyEntry clientKeyPair;
ProtectionParameter password;
URL pdpUrl;

// Form the URL of PDP
try {

pdpUrl = new URL("https://localhost:6010");
}
catch (MalformedURLException ex) {

Logger.getLogger(Example3.class.getName()).log(Level.SEVERE, null,
ex);

return;
}

// Retrieve trusted KeyStore from file
// File name: `truststore_test_path'
// KeyStore type: `Java KeyStore'
// KeyStore password: `testpass'
trustAnchor = readKeyStore("truststore_test_path", "JKS", "testpass".

toCharArray());

// Retrieve KeyStore which contains the client KeyPair
// File name: `mykeystore.jks'
// KeyStore type: `Java KeyStore'
// KeyStore password: `testpass'
keyStore = readKeyStore("mykeystore.jks", "JKS", "testpass".

toCharArray());
try {

// Retrieving KeyPair from keyStore
// Signing key Alias: `mhunter'
// Signing key Alias password: empty
password = new KeyStore.PasswordProtection("".toCharArray());
clientKeyPair = (KeyStore.PrivateKeyEntry)keyStore.getEntry(

"asherma", password);
}
catch (Exception ex) {

Logger.getLogger(Example3.class.getName()).log(Level.SEVERE, null, ex);
return;

}

// Create ClientSslConnector object

- 11 -



ViewDS Version 7.5.1

try {
connector = new ClientSslConnector(pdpUrl,

CommunicationType.XML_REST,
clientKeyPair,
new PKIXParameters(trustAnchor),
false);

}
catch (KeyStoreException | InvalidAlgorithmParameterException ex) {

Logger.getLogger(Example3.class.getName()).log(Level.SEVERE, null, ex);
return;

}

try {
req = connector.createRequest();

//username: smith
req.addElement(

AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

//resource: reports summary
req.addElement(

AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"reports summary");

//action: modify
req.addElement(

AttributeCategory.action,
ActionAttributes.action_id,
AttributeDataType.anyURI,
"foo:bar:modify");

//current time
req.addElement(

AttributeCategory.environment,
EnvironmentAttributes.current_time,
AttributeDataType.time,
PdpConnector.formatLocalTimeForXml(new Date()));

res = connector.evaluate(req);
}
catch (AikException | SOAPException ex) {

Logger.getLogger(Example3.class.getName()).log(Level.SEVERE, null, ex);
return;

}

if (res.getResult().equals(Result.permit)) {
System.out.println("Permit");

}
else {

System.out.println("Not permit");
}

}

private static KeyStore readKeyStore(String keyStorePath, String storeType,
char[] storePass)

{
KeyStore local = null;
try {

local = KeyStore.getInstance(storeType);

- 12 -



ViewDS AIK for Java

local.load(new FileInputStream(keyStorePath), storePass);
}
catch (Exception ex) {

Logger.getLogger(Example3.class.getName()).log(Level.SEVERE, null, ex);
}
return local;

}

- 13 -



ViewDS Version 7.5.1

Obligations and advice
Obligations and advice are features of XACML 3.0 that can be used to convey directives to
applications that define themwithin an XACML response. An obligation is amandatory
directive whereas advice is optional.

To illustrate, an obligation to add a log entrymight be associated with permitting access to a
highly restricted resource. In this case, when the application is told that access is permitted it
is also told that it is obliged to log the access for auditing purposes. If the application cannot
perform the logging operation, it will refuse access to the resource.

The application using the AIK is required to register known obligations. This is intended to
ensure that all obligations are identified and supported by the application, and that any
unsupported obligations result in the application returning
denyDueToUnrecognizedObligations. To register obligations use:
registerObligation(java.lang.String obligationId)

The Obligation object is used to return obligations in the authorization response.

Advice is similar to an obligation, except execution of advice by the application is optional.

For example an XACML responsemight deny access to a document on the weekend and
comewith the advice to show amessage to the user that access is only available on week
days.

The Advice object is used to return advice in the authorization response.

NOTE: The specific obligations and advice implemented by a given application are
defined by that application. The Java AIK merely provides amechanism for handling
authorization responses that include obligations and advice.

Example code
This example shows how to register and fulfil an obligation. For the sake of brevity simple
strings are used as identifiers for attribute assignments (e.g. email and recipientaddress) in
place of URIs (e.g. foo:bar:recipientaddress).
public class Example5
{

public static void main(String[] args) throws AikSecurityException,
AikConnectionException

{
PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse response;
URL pdpUrl;

// Form the URL of PDP
try {

pdpUrl = new URL("http://localhost:6009");
}

- 14 -



ViewDS AIK for Java

catch (MalformedURLException ex) {
Logger.getLogger(Example5.class.getName()).log(Level.SEVERE, null, ex);
return;

}

// Create AnonymousConnector object
connector = new AnonymousConnector(pdpUrl,

CommunicationType.XML_SOAP,
null,
false);

connector.registerObligation("foo:bar:email");

try {
req = connector.createRequest();

req.addElement(
AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"asherma");

req.addElement(
AttributeCategory.action,
ActionAttributes.action_id,
AttributeDataType._string,
"foo:bar:modify");

response = connector.evaluate(req);

switch (response.getResult()) {
case deny:

//deny
break;

case denyWithObligations:
//deny
fulfilObligations(response.getObligations());
break;

case denyDueToUnrecognizedObligations:
//deny
break;

case denyUnlessAllObligationsSatisfied:
if (fulfilObligations(response.getObligations())) {

//permit
}
else {

//deny
}
break;

case permit:
//permit
break;

}
System.out.println("Result: " + response.getResult().toString());

}
catch (AikException | SOAPException ex) {

Logger.getLogger(Example5.class.getName()).log(Level.SEVERE, null, ex);
}

}

private static boolean fulfilObligations(List<Obligation> obligations)
{

for (Obligation ob : obligations) {
if (ob.getId().equals("foo:bar:email")) {

sendEmail(ob);

- 15 -



ViewDS Version 7.5.1

}
else {

return false;
}

}
return true;

}

private static boolean sendEmail(Obligation ob)
{

// List of Recipient's email IDs needs to be mentioned.
List<String> recipientAddresses = new ArrayList<String>();
// Sender's email ID needs to be mentioned
String from = "test@viewds.com";
// Host name of the mail server
String host = "viewds.com";
String subject = "";
String body = "";

Properties properties;

for (AttributeAssignment aa : ob.getAttributes()) {
String attId;
String attCat;
String attVal;

attId = aa.getAttributeId().toLowerCase();
attCat = aa.getCategoryId().toLowerCase();
attVal = aa.getAttributeValue();

if (attCat.equals("email") &&
attId.equals("recipientaddress")) {

recipientAddresses.add(attVal);
}

if (attCat.equals("email") &&
attId.equals("subject")) {

subject = attVal;
}

if (attCat.equals("email") &&
attId.equals("body")) {

body = attVal;
}

}

if (recipientAddresses.isEmpty()) {
return false;

}

// Get system properties
properties = System.getProperties();
// Setup mail server
properties.setProperty("mail.smtp.host", host);
// Get the default Session object.
Session session = Session.getDefaultInstance(properties);

try {
// Create a default MimeMessage object.
MimeMessage message = new MimeMessage(session);
// Set From: header field of the header.
message.setFrom(new InternetAddress(from));

// Set To: header field of the header.

- 16 -



ViewDS AIK for Java

for (String recipient : recipientAddresses) {
message.addRecipient(Message.RecipientType.TO,

new InternetAddress(recipient));
}

// Set Subject: header field
message.setSubject(subject);
// Now set the actual message
message.setText(body);
// Send message
Transport.send(message);

}
catch (MessagingException ex) {

Logger.getLogger(Example5.class.getName()).log(Level.SEVERE, null, ex);
return false;

}
return true;

}
}

- 17 -



ViewDS Version 7.5.1

Multiple requests
In addition to sending individual authorisation requests, the . NET and Java AIKs also allow
you to createmultiple authorization requests and add them to one MultiRequest object.
The MultiRequest object is then sent that to the PDP, which returns and
MultiResponse object. Each request added to themulti-request is assigned a UID which
is used to identify the corresponding result element in themulti-response.

This feature is particularly useful in circumstanceswhere one access control action by the
application requiresmore than one authorization decision to bemade.

For example, if a user (subject) is trying to view (action) a list of documents (resources),
then an authorization decision is required for each item on the list. In such a scenario,
sending all the requests in a singlemessage, rather than sending onemessage for each
request, reduces themessaging overhead considerably.

Example code
public class Example4
{

public static void main(String[] args) throws AikSecurityException,
AikConnectionException

{
PdpConnector connector;
AuthorizationRequest req1, req2;
MultiRequest mulReq;
MultiResponse mulRes;
URL pdpUrl;

// Form the URL of PDP
try {

pdpUrl = new URL("http://localhost:6009");
}
catch (MalformedURLException ex) {

Logger.getLogger(Example4.class.getName()).log(Level.SEVERE, null, ex);
return;
}

// Create AnonymousConnector object
connector = new AnonymousConnector(pdpUrl,

CommunicationType.XML_SOAP,
null,
false);

mulReq = new MultiRequest(false);

try {
req1 = connector.createRequest();

req1.addElement(
AttributeCategory.access_subject,
SubjectAttributes.role,
AttributeDataType._string,
"MANAGER");

req1.addElement(

- 18 -



ViewDS AIK for Java

AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"REPORT A");

req2 = connector.createRequest();

req2.addElement(
AttributeCategory.access_subject,
SubjectAttributes.role,
AttributeDataType._string,
"MANAGER");

req2.addElement(
AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"REPORT B");

mulReq.addRequest(req1);
mulReq.addRequest(req2);

mulRes = connector.evaluate(mulReq);

if (mulRes.getResultForRequest(req1).getDenyBiasedResult().equals(
Result.permit)) {

System.out.println("Permit");
}
else {

System.out.println("Not permit");
}
if (mulRes.getResultForRequest(req2).getDenyBiasedResult().equals(

Result.permit)) {
System.out.println("Permit");

}
else {

System.out.println("Not permit");
}

}
catch (SOAPException | AikException ex) {

Logger.getLogger(Example4.class.getName()).log(Level.SEVERE, null, ex);
}

}
}

- 19 -



ViewDS Version 7.5.1

Tracing
The .NET and Java AIKs provide a tracing feature to allow you to investigate the cause of
any unexpected responses you obtain from the PDP. If trace information is requested, the
response from the PDP will include information about the policy evaluation process that
took place on the server.

NOTE: Tracing is not supported for the communication type JSON_REST.

To request trace information youmust set the traceSwitch:
AuthorizationRequest req = new AuthorizationRequest(true);

NOTE: In order to get trace information, tracingmust also be enabled on the ViewDS
server. See the Enable tracing topic in the ViewDS Access Sentinel Installation and
ReferenceGuide for full details.

Trace information will then be available in the traceInfo property included in the
response.

Example code
This example shows how to switch on tracing.
public class Example6
{

public static void main(String[] args) throws AikSecurityException,
AikConnectionException

{
PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
URL pdpUrl;

// Form the URL of PDP
try {

pdpUrl = new URL("http://localhost:6009");
}
catch (MalformedURLException ex) {

Logger.getLogger(Example6.class.getName()).log(Level.SEVERE, null, ex);
return;

}

// Create AnonymousConnector object
connector = new AnonymousConnector(pdpUrl, CommunicationType.XML_SOAP,

null, false);

try {
req = connector.createRequest();
req.addElement(

AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"REPORT A");

- 20 -



ViewDS AIK for Java

res = connector.evaluate(req);

//print the tracing information from the response
System.out.println(res.getTraceInfo());

}
catch (AikException | SOAPException ex) {

Logger.getLogger(Example6.class.getName()).log(Level.SEVERE, null, ex);
}

}
}

- 21 -



ViewDS Version 7.5.1

Appendix A: AIK structure
The Java AIK is a class library developed in Java and distributed in following file:
l PdpLiaison.jar

The library exposes the followingmembers.

AnonymousConnector
This class is used to configure an anonymous connection to a PDP. An object of this type
should be instantiated at the beginning to be used for sending anonymous authorization
requests to the PDP.

The publicmembers of this class are shown below.

XmlSigningConnector
This class is used to configure a connection to a PDP through which signed authorisation
request can be sent. An object of this type should be instantiated at the beginning to be used
to sign authorisation requests using XML digital signatures before sending them to the PDP.

The publicmembers of this class are shown below.

ClientSslConnector
This class is used to configure a secure HTTPS connection to a PDP. An object of this type
should be instantiated at the beginning to be used to send authorisation requests to the
PDP via a secure HTTPS connection.

The publicmembers of this class are shown below.

- 22 -



ViewDS AIK for Java

AuthorizationRequest
Objects of this type should be instantiated for each XACML authorization decision request
to be sent to the PDP.

The publicmembers of this class are shown below.

MultiRequest
Multiple AuthorizationRequest objects can be added to an object of this type and sent
together to the PDP which then provides aMultiReponse. Each request added to the
MultiRequest object is assigned a UID which is used to identify the corresponding result
element in theMultiResponse.

The publicmembers of this class are shown below:

AuthorizationResponse
The results of an XACML authorization decision request are returned as objects of this type.

The publicmembers of this class are shown below.

- 23 -



ViewDS Version 7.5.1

MultiResponse
The results of aMultiRequest authorization decision request are returned as objects of this
type. The publicmembers of this class are shown below:

Obligation
The obligations to be fulfilled are returned as objects of this type which are included in the
authorization response. The publicmembers of this class are shown below.

Advice
The advice to be fulfilled is returned as objects of this type which are included in the
authorization response. The publicmembers of this class are shown below.

- 24 -



ViewDS AIK for Java

AttributeAssignment
The attributes of an obligation or an advice are objects of this type. The publicmembers of
this class are shown below.

AttributeCategory
A list of constant strings that represent identifiers of the standard attribute categories
specified in the XACML core specification.

SubjectAttributes
A list of constant strings that represent identifiers of the standard subject attributes specified
in the XACML core specification.

- 25 -



ViewDS Version 7.5.1

ResourceAttributes
A list of constant strings that represent identifiers of the standard resource attributes
specified in the XACML core specification.

ActionAttributes
A list of constant strings that represent identifiers of the standard action attributes specified
in the XACML core specification.

EnvironmentAttributes
A list of constant strings that represent identifiers of the standard environment attributes
specified in the XACML core specification.

DelegationInfoAttributes
A list of constant strings that represent identifiers of the standard delegationInfo attributes
specified in the XACML core specification.

- 26 -



ViewDS AIK for Java

AttributeDataType
An enumerative list of standard data types specified in the XACML core specification.

Result
An enumerative list of authorization results specified in the AIK.

XacmlStatus
An enumerative list of standard XACML status types.

- 27 -



ViewDS Version 7.5.1

AIK Class Diagram

- 28 -



ViewDS AIK for Java

- 29 -



ViewDS Version 7.5.1

Appendix B: AIK exceptions
The Java AIK throws exceptionswhen errors occur, for example, when the AIK fails to send
a request to the PDP because the PDP is unreachable.

A series of exception classes have been added to Java AIK to handle these, as shown
below:

This appendix lists all of the exceptions thrown for each supported connector class and their
causes.

Class: AnonymousConnector
Method: evaluate

Cause: failure in sending the HTTP request to the PDP

l Exception type: AikConnectionException

l Exceptionmessage: "Error in sending the HTTP request to PDP: " + inner-
WebException.Message

Cause: saml request Id mismatch with InResponseTo Id

l Exception type: AikSecurityException

l Exceptionmessage: "Request ID does not match the response ID"

Cause: failure in finding a signature in the response

l Exception type: AikServerAuthenticationException

l Exceptionmessage: "Verification failed: No Signature was found in themessage."

Cause: findingmore than one signature on the response

- 30 -



ViewDS AIK for Java

l Exception type: AikServerAuthenticationException

l Exceptionmessage: "Verification failed: More that one signature was found for themes-
sage."

Cause: failure in signature validation

l Exception type: AikServerAuthenticationException

l Exceptionmessage: "Invalid signature."

Cause: failure in certificate validation

l Exception type: AikServerAuthenticationException

l Exceptionmessage: "Certificate not trusted."

Cause: failure in finding the X509SubjectName in the response in the absence of certificate
in the response

l Exception type: AikServerAuthenticationException

l Exceptionmessage: "Subject name of the signing certificate not found."

Cause: failure in finding a certificate in the identified store with the identified
X509SubjectName

l Exception type: AikServerAuthenticationException

l Exceptionmessage: "Certificate with the identified subject name does not exist in the cer-
tificate store.

Cause: findingmore than one certificate in the identified store with the identified
X509SubjectName

l Exception type: AikServerAuthenticationException

l Exceptionmessage: "More than one certificate with the identified subject name in the cer-
tificate store."

Cause: the inResponseTo field of the received response does not match the queryId of the
sent request

l Exception type: AikException

l Exceptionmessage: Request ID does not match the response ID.

Constructor initialization

Cause: invalid constructor's parameter combination. XML signature in json rest is invalid.

l Exception type: AikSecurityException

l Exceptionmessage: "XML Signature is not supported in JSON_REST"

Cause: invalid constructor's parameter combination. AIK requires parameters attribute to
be set in order to establish SSL connection.

l Exception type: AikSecurityException

l Exceptionmessage: "secure connection is set, parameters cannot be null."

Cause: invalid constructor's parameter combination. AIK requires parameters attribute to
be set in order to verify signed responses.

- 31 -



ViewDS Version 7.5.1

l Exception type: AikSecurityException

l Exceptionmessage: "verify signature flag is set, parameters cannot be null."

Class: XmlSigningConnector
All of the exceptions for AnonymousConnector plus:

Method: evaluate

Cause: server does not accept the AIK's signature on the request and returns
urn:oasis:names:tc:SAML:2.0:status:AuthnFailed as the SAML status.

l Exception type: AikClientAuthenticationException

l Exceptionmessage: "Authentication failed."

Class: ClientSslConnector
All of the exceptions for AnonymousConnector plus:

Method: evaluate

Cause: server does not allow the SSL connection from the AIK because of the client's
certificate.

l Exception type: AikClientAuthenticationException

l Exceptionmessage: "Authentication failed."

- 32 -




	Overview
	Simple authorization requests
	Unsigned requests
	Signed requests
	Requests over a secure connection

	Obligations and advice
	Example code

	Multiple requests
	Example code

	Tracing
	Example code

	Appendix A: AIK structure
	AnonymousConnector
	XmlSigningConnector
	ClientSslConnector
	AuthorizationRequest
	MultiRequest
	AuthorizationResponse
	MultiResponse
	Obligation
	Advice
	AttributeAssignment
	AttributeCategory
	SubjectAttributes
	ResourceAttributes
	ActionAttributes
	EnvironmentAttributes
	DelegationInfoAttributes
	AttributeDataType
	Result
	XacmlStatus
	AIK Class Diagram

	Appendix B: AIK exceptions
	Class: AnonymousConnector
	Class: XmlSigningConnector
	Class: ClientSslConnector


